

# PowerPivot és a DAX

Margitfalvi Árpád

Copyright © Margitfalvi Árpád, 2019

# tartalomjegyzék

| tematika és koncepció                                          |          |
|----------------------------------------------------------------|----------|
| mit                                                            | 2        |
|                                                                | 2        |
| alaptogalmak<br>telenítés                                      | З        |
| kezelő felület                                                 | 3        |
| táblák                                                         | 4        |
| kapcsolat                                                      | 4        |
| importálás munkafüzetből                                       |          |
| munkafüzet kiválasztása                                        | 5        |
| munkalapok kivalasztasa                                        | 6        |
| táblák a bővítmény ablakában                                   | 0<br>8   |
| lokális adatkapcsolatok                                        | 9        |
| a táblák mentése                                               | 9        |
| univerzális adatkapcsolat létrehozása                          | 10       |
| adattípusok                                                    |          |
| a DAX adattípusai                                              | 13       |
| az adattipus megallapítása                                     | 13       |
| szelektív importálás                                           | 14       |
| a villámnézet ablaka                                           | 16       |
| az oszlopok szelektálása                                       | 16       |
| a sorok szelektálása                                           | 17       |
| szövegfájl importálása                                         |          |
| fogalmak                                                       | 19       |
| beolvasas                                                      | 19       |
|                                                                | 20       |
| fogalmak                                                       | 21       |
| az egyesítő tábla létrehozása                                  | 22       |
| a táblázat előkészítése                                        | 23       |
| rekordok hozzáadása az egyesítő táblához                       | 24       |
| további vágólap-műveletek                                      | 25       |
| tábla adatbázís-táblázatból                                    | 26       |
| rogalmak<br>a tábla létrebozása                                | 26       |
| tábla a kimutatás forrásából                                   | 20       |
| létrehozás                                                     | 27       |
| táblák                                                         |          |
| az adatnézet felépítése                                        | 28       |
| tábla-műveletek                                                | 29       |
| rekord-navigáció                                               | 29       |
| kijelölés                                                      | 30       |
| Mezok kezelese<br>rokordok automatikus rondozóso               | 30       |
| rekordok felhasználój rendezése                                | 32       |
| a mező adattípusa és számformátuma                             | 32       |
| műveletek visszavonása ismétlése                               | 32       |
| tábla frissítése                                               | 33       |
| kapcsolatok beolvasása                                         |          |
| fogalmak                                                       | 34       |
| kapcsolatok importalasa                                        | 34       |
| műveletek kancsolatnézetben                                    | 36       |
| kancsolatok automatikus létrehozása                            | 50       |
| fogalmak                                                       | 37       |
| a modul működése                                               | 37       |
| kapcsolat manuális létrehozása                                 |          |
| fogalmak                                                       | 40       |
| nem kapcsolódó rekordok                                        | 40       |
| a kapcsolat letrenozasa<br>a kapcsolat törlése és megszakadása | 41<br>12 |
| Data Analysis Expressions                                      | 40       |
| a DAX képlet jellemzőj                                         | 44       |
| nevek a DAX képletében                                         | 45       |
| adattípusok konvertálása a képletben                           | 45       |

| számított objektumok                       |     |
|--------------------------------------------|-----|
| számított mező fogalma                     | 46  |
| számított mező létrehozása                 | 46  |
| képletek újra számolása                    | 48  |
| automatikus osszesítés                     | 49  |
| czűrők a DAX képletben                     | 50  |
| mezőhívatkozások                           | 54  |
| PowerPivot-kimutatás                       | J_  |
| a hővítmény kimutatás-modulia              | 56  |
| a PowerPivot-kimutatás segédablaka         | 56  |
| kimutatás és kimutatásdiagram létrehozása  | 58  |
| tételek egyedi sorrendje a kimutatásban    | 59  |
| egyéni nézetek                             |     |
| fogalmak                                   | 60  |
| egyéni nézetek kezelése                    | 60  |
| több a többhöz kapcsolat                   |     |
| fogalmak                                   | 62  |
| számított mező több a többhöz kapcsolatban | 62  |
| összesítések több a többhöz kapcsolatban   | 63  |
| feltételes formázás a kimutatásban         |     |
| fogalmak                                   | 66  |
| a felteteles formazas kezelese             | 66  |
| celertekes elemzes letrenozasa             | 66  |
|                                            | 69  |
|                                            | 71  |
| dátumok kozolóso                           | 71  |
| tételek csonortosítása a kimutatásban      | 71  |
| karakteres tételek csonortosítása          | 72  |
| numerikus tételek csoportosítása           | 73  |
| dátum-tételek csoportosítása               | 74  |
| dátumok automatikus csoportosítása         | 75  |
| a naptár-tábla                             | 76  |
| a naptár-tábla létrehozása                 | 77  |
| a naptár-tábla kapcsolatai                 | 79  |
| naptár-tábla a kimutatásban                | 80  |
| időszak-kezelő függvények                  | 80  |
| meghatározott napok adatainak feldolgozása | 81  |
| dátumot adó időszak-kezelő függvények      | 82  |
| dátumokat adó időszak-kezelő függvények    | 83  |
| az időszak-kezelő függvények rendszerezése | 88  |
| idő-kezelő függvények                      | 90  |
| információs függvények                     | 91  |
| logikai fuggvenyek                         | 94  |
| elagazasok kezelese                        | 95  |
| elojeles szamok kezelese                   | 96  |
|                                            | 97  |
| teszt-értékek generálása                   | 97  |
| további matematikaj függvények             | 99  |
| szám és szöveg konvertálása                | 99  |
| hierarchia kezelése                        | 104 |
| hierarchia a kimutatásban                  | 105 |
| hierarchikus mezőcsoport                   | 106 |
| egyedi bejegyzések lekérdezése             | 108 |
| szűrő-kezelés a képletben                  | 110 |
| szűrő-információk                          | 113 |
| szűrőfüggvények                            | 116 |
| kereső függvények                          | 122 |
| statisztikai függvények                    | 125 |
| szöveg-kezelő függvények                   | 131 |
| tábla-kezelő függvények                    | 136 |
| tabla-kezelő függvények rendszerezése      | 149 |
| tüggvények előfordulása                    | 151 |

# tematika és koncepció

#### mit

A PowerPivot (ErősKimutatás) bővítmény az adatelemzés eszköze az Excel programban, amellyel különböző fájlokban és különböző formátumokban tárolt adathalmazokat egyetlen egységként vizsgálhatunk. A bővítmény az elemzendő adatokról másolatot készít, majd a másolatokat saját formátumára alakítja át és táblákban helyezi el. A táblák a PowerPivot saját windows-ablakában állnak. A táblákban tárolt adatok nem módosíthatók, de az aktualizálás lehetőségét a bővítmény biztosítja.

A táblák egyetlen egységként való kezelését a köztük lévő kapcsolatok teszik lehetővé. A kapcsolatokat általában a felhasználó hozza létre, de a bővítmény képes a létező kapcsolatokat a forrásadatokkal együtt beolvasni, illetve meghatározott feltételek teljesülése esetén automatikusan létrehozni. A kapcsolatokkal egyesített táblák alkotják a PowerPivot adatbázist.

Az adatbázis kimutatásos elemzése már az Excel ablakban történik, a PowerPivot saját kimutatás moduljával, amelyről a bővítmény a nevét kapta.

A PowerPivot képleteiben a "Data Analysis Expressions" (rövidítve "DAX") nevű, a bővítményhez tervezett, számítási rendszert kell használnunk. Ez azt jelenti, hogy a PowerPivot és az Excel operátor- és függvény-készlete, valamint szemantikai és szintaktikai szabály-rendszere eltérő!

A bővítmény elsősorban összekapcsolt táblák egy egységként történő elemzésére szolgál, de önálló, kapcsolatok nélküli táblák vizsgálatára is alkalmas.

Ez a leírás a 2019-es Excel verzió "Microsoft PowerPivot for Excel" nevű, COM bővítményt mutatja be, de csak azokat a funkcióit tárgyalja, amelyek önállóan, más szoftver igénybevétele nélkül is működnek! A leírás nem foglalkozik a DAX és más számítástechnikai nyelvek kapcsolatával és csak Excel munkafüzetben, formázást nem tartalmazó szövegfájlban, illetve Access adatbázisban álló adatok feldolgozását ismerteti!

### hogyan

Ez a leírás olyan gyakorlott Excel felhasználóknak készült, akik még teljesen kezdők a PowerPivot használatában. A szemléltető példák a lehető legegyszerűbbek, de a fogalmak egyértelmű meghatározása számos ponton "nehéz" szöveget eredményezett.

Az Excel és a PowerPivot objektumainak megkülönböztetésére a következő fogalom-párosokat használom, program - bővítmény (Excel - PowerPivot) sorrendben: táblázat - tábla, sor - rekord, oszlop - mező, cella - bejegyzés.

A leírásban az utasítások elemei a következő sorrendben követik egymást: a menüszalag lapjának neve, a csoport neve, a parancslista vagy a parancsgomb neve. Az utasítások kiemelését dőlt betűformázással oldottam meg.

A szövegben a perjel (/) két fogalom vagylagos összekapcsolását jelenti. Tehát a "hónap/negyedév/év" szöveg jelentése: hónap vagy negyedév vagy év.

A bővítményben létrehozott adathalmaz egy kvázi adatbázis. Azért nem igazi adatbázis, mert a PowerPivot sokkal "megengedőbb" szabályrendszert alkalmaz, mint az adatbázis-kezelő szoftverek. Ennek ellenére, a jó olvashatóság érdekében, a szövegben a jelző nélküli fogalmat használom.

> Margitfalvi Árpád margitfalvi.arpad@gmail.com

# alapfogalmak

### telepítés

A Microsoft Excel 2019-es verziójának telepítése után a PowerPivot bővítményt is telepítenünk kell. Először jelenítsük meg a COM-bővítmények parancstábláját a Fájl, Beállítások, Bővítmények, Kezelés: COM-bővítmények, Ugrás... utasítással, majd a Létező bővítmények listából válasszuk a Microsoft PowerPivot for Excel tételt.

Egy esetleges összeomlása után a program automatikusan letilthatja a bővítményt. Ebben az esetben a *Kezelés* lista *Letiltott bővítmények* elemével kezdeményezhetjük a PowerPivot ismételt betöltését.

A bővítmény 2019-os verziója nem kompatibilis a 2010-es változattal, ezért az ezekkel a verziókkal készült munkafüzetek PowerPivot tartalmával csak a fájl konvertálása után dolgozhatunk. A program felajánlja az átalakítást és jóvágyásunkat követően a konvertált változattal felülírja az eredeti munkafüzetet.

# kezelő felület

A bővítmény vezérlőit a program menüszalagjának *PowerPivot* lapja és a bővítmény ablaka tartalmazza. Az elemzendő adatok másolatát a PowerPivot saját formátumára alakítja át és táblákba helyezi. A táblák megjelenítése és kezelése a bővítmény ablakában történik.

A táblák közötti kapcsolatok deklarálásával létrehozott adatbázis kimutatásos elemzése a program ablakában történik. A táblák és a kimutatások a munkafüzetben tárolódnak. A mentett fájl kiterjesztése: xlsx. Magyarul, nincs PowerPivot fájl és nincs PowerPivot fájlformátum. A munkafüzet PowerPivot tartalmára a fájlnév végé álló PP betűkkel utalhatunk. Például: éves jelentés PP.xlsx.

A programból a PowerPivot, Adatmodell, Kezelés utasítással léphetünk át a bővítmény ablakba. Az Excel-ablakba a bővítmény gyorselérési eszköztárának Váltás a munkafüzetre utasításával térhetünk vissza. A bővítmény ablakának bezárása nem okoz adatvesztést, mert a PowerPivot adatok a számítógép operatív tárjában tárolódnak. Mentésük a gazda-munkafüzet mentésével történik.



1. ábra a bővítmény- és a program ablaka közötti váltás vezérlői

A bővítmény nyelve, a szokásos beállítások mellett, azonos a program nyelvével. Ettől eltérő megjelenítést a program ablakában a PowerPivot, Beállítások, Nyelv utasítással kezdeményezhetünk.

### táblák

A vizsgálandó adatok másolatát a PowerPivot táblákban helyezi el. A tábla oszlopai a mezők, nevük az oszlop első cellájában áll. A tábla sorai a rekordok. A rekord meghatározott mezőjében álló adat a mezőbejegyzés, vagy röviden bejegyzés. A hiányzó adatot "üres bejegyzésnek" nevezzük.

Az elemzendő, eredeti, adathalmaz a tábla forrása. A tábla-készítés első lépése a forrás-adatok beolvasása. A "beolvasás" kifejezés metafora, valójában az adatok másolása történik ebben a fázisban. A bővítmény a beolvasott adatok vizsgálata alapján állítja be a mezők adattípusát. Minden mezőben csak a beállított típusú adat kerülhet, ezért az ettől eltérőeket a bővítmény átalakítja a mező adattípusára, vagy ha ez nem lehetséges, akkor törli őket. Ez az egységesítő folyamat a homogenizálás.

Tábla készülhet belső vagy külső forrásból. Belső forrásnak nevezem, azt az adathalmazt, amely abban a munkafüzetben áll, amelyből a bővítményt elindítottuk. Külső adatforrás állhat másik munkafüzetben, text-fájlban, Access adatbázisban...



2. ábra külső forrás beolvasásának vezérlői a bővítmény ablakában

A külső forrás beolvasását importálásnak nevezzük, amelyet a felhasználó egy varázsló segítségével felügyel. A bővítmény a külső forrást tartalmazó fájl nevét, elérési útvonalát és egyéb tulajdonságait névvel azonosított objektumba menti el, amelynek neve adatkapcsolat. Az adatkapcsolat biztosítja a táblák frissíthetőségét.

### kapcsolat

A kapcsolat két tábla összetartozásának deklarációja, amely a két tábla egy-egy mezőjét tartalmazza. Ezek a mezők a táblák kapcsoló mezői. Valójában nem a két tábla, hanem rekordjaik tartoznak össze. Gondoljunk a "megrendelők" és "megrendelések" táblák rekordjaira. A kapcsoló mezők azonos bejegyzései biztosítják az összetartozó rekordok "lekérdezhetőségét". Például a megrendelők tábla "megrendelő AZ" mezőjének "007" bejegyzése a megrendelések tábla három rekordjának "megrendelő AZ" mezőjében található meg. Ezek szerint a 007-es azonosítójú megrendelőnek három megrendelését tároljuk a megrendelések táblában.

A kapcsolatok létrehozása a felhasználó feladata, de meghatározott feltételek teljesülése esetén, a felhasználó utasítására, a PowerPivot is el tudja készíteni a deklarációt. Access-táblák importálásakor a bővítmény a táblák közötti kapcsolatokat is be tudja olvasni a forrás-fájlból.

A bővítmény a kapcsolatokkal egyesített tábla-csoportot nem adatbázisnak, hanem adatmodellnek nevezi, aminek semmi értelme! A hétköznapi nyelvhasználat modell szavának számtalan értelmezése közül, egynek sincs köze, még tágabb értelmezésben sem, a PowerPivot objektumokhoz. Ráadásul az adatmodell fogalom az adatbázis-kezelés terminológiájában teljesen mást jelent.

# importálás munkafüzetből

### munkafüzet kiválasztása

Az elemzendő adatok beolvasását a Tábla importálása varázsló elnevezésű segédprogram végzi, amelyet a PowerPivot ablak Kezdőlap, Külső adatok beolvasása, Más forrásokból parancsával indíthatunk el.

A segédprogram első, Kapcsolódás adatforráshoz panelján listát találunk a lehetséges adatforrásokról. Válasszuk ki a Szövegfájlok csoportban az Excel-fájl elemet, majd kattintsunk a Tovább gombra.

| lábla importálása varázsló                                                                                                                                                    | ?    | $\times$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|
| Kapcsolódás adatforráshoz<br>Létrehozhat kapcsolatot adatforrással, vagy használhat már létező kapcsolatot.                                                                   |      |          |
| Relációs adatbázisok                                                                                                                                                          |      | ^        |
| Microsoft Access<br>Kapcsolatot létesíthet egy Microsoft Access-adatbázissal. Importálhat az<br>adatbázisból táblákat, nézeteket vagy egy lekérdezés által visszaadott adatok | at.  |          |
| Szövegfájlok                                                                                                                                                                  |      |          |
| Adatokat importálhat egy Excel-fájlból.                                                                                                                                       |      |          |
| Szövegfájl<br>Adatokat importálhat egy szövegfájlból.                                                                                                                         |      | ~        |
| < <u>V</u> issza <u>I</u> ovább > <u>B</u> efejezés                                                                                                                           | Mégs | e        |

3. ábra a segédprogram első panelja

A varázsló második, *Kapcsolódás Microsoft Excel-fájlhoz* feliratú paneljának *Tallózás…* nyomógombjával választhatjuk ki a munkafüzetet. Megnyitott fájlt ne válasszunk, mert abból nem tudja a bővítmény kiolvasni az adatokat. Egy munkamenetben csak egy Excel fájlból tudunk importálni. Ebből következően, ahány munkafüzetünk van, annyiszor kell a műveletsort megismételni.

| Tábla importálása varázsló                                            |                                                        | ? X                 |
|-----------------------------------------------------------------------|--------------------------------------------------------|---------------------|
| Kapcsolódás Microsoft Excel-fájlh<br>Adja meg a Microsoft Excel-fájlh | <b>oz</b><br>noz való kapcsolódáshoz szükséges adatoka | t.                  |
| Kap <u>c</u> solat felhasználóbarát neve:                             | Excel 01 munkalapok                                    |                     |
| E <u>x</u> cel-fájl elérési útja:                                     | E:\temp\01 munkalapok.xlsx                             | Talló <u>z</u> ás   |
|                                                                       | Az első sor adatai alkossák az <u>o</u> szlopf         | ejléceket.          |
|                                                                       | <u>S</u> peciális <u>K</u>                             | apcsolat tesztelése |
| $\sim \sim$                                                           | $\sim$                                                 |                     |

4. ábra a segédprogram második panelja

A kiválasztott fájl nevét és elérési útvonalát a bővítmény automatikusan adatkapcsolatba menti. Az objektum neve: Excel<szóköz><munkafüzet neve>. Egyedi nevet a Kapcsolat felhasználóbarát neve mezőben adhatunk meg.

A létrehozandó tábla mezőnevei azonosak lesznek a forrás táblázat oszlopneveivel, ha kipipáljuk *Az első sor adatai alkossák az oszlopfejléceket* jelölőnégyzetet. Ha a vezérlő jelöletlen marad, akkor a mezők az F1, F2, F3... neveket kapják és az esetleges oszlop-nevek is elemzendő adatnak minősülnek.

### munkalapok kiválasztása

A varázsló harmadik, Táblák és nézetek kijelölése feliratú panelján a munkafüzet lapjai és elnevezett tartományai közül választhatunk. A megjelenített listában az objektumok, nevük szerint, ABC sorrendbe szedve követik egymást.

| Tábla importálása varázsló ?                                                                                            |                               |                      |                 |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------|-----------------|--|--|--|--|--|--|
| Táblák és nézetek kijelölése<br>Válassza ki azokat a táblákat, illetve nézeteket, amelyekből adatokat kíván importálni. |                               |                      |                 |  |  |  |  |  |  |
| Fájlnév: E:\tananyagok\táblázatkezelés\Excel Mester\PowerPivot\2019\feladatok\01<br>munkalapok.xlsx                     |                               |                      |                 |  |  |  |  |  |  |
|                                                                                                                         | s liezelek.                   |                      |                 |  |  |  |  |  |  |
|                                                                                                                         | Forrástábla                   | Felhasználóbarát név | Szűrő részletei |  |  |  |  |  |  |
|                                                                                                                         | Bicske\$                      | Bicske               |                 |  |  |  |  |  |  |
|                                                                                                                         | Csurgó\$                      | Csurgó               |                 |  |  |  |  |  |  |
|                                                                                                                         | Csurgó\$_xInm#_FilterDatabase |                      |                 |  |  |  |  |  |  |
|                                                                                                                         | Fonyód\$                      | Fonyód               |                 |  |  |  |  |  |  |
|                                                                                                                         | Hatvans                       | Hatyan               |                 |  |  |  |  |  |  |

5. ábra a segédprogram harmadik panelja

A bővítmény a munkafüzet tartalmi vizsgálata nélkül állítja össze a lapok jegyzékét, ezért abban üres munkalapok is szerepelhetnek. A beolvasott munkalap-neveket a program dollárjellel egészíti ki: <lap-név>\$ illetve, ha a név szóközt is tartalmaz, akkor a karakterlánc aposztrófok között áll: '<lap ne-ve>\$'. A tartomány-nevek után a bővítmény nem tesz dollárjelet.

Az importálandó elemeket jelölőnégyzetekkel választhatjuk ki. A lista bal felső sarkában álló vezérlővel az összes lapot ki tudjuk jelölni. Ha a munkafüzet csak egyetlen lapot tartalmaz, akkor azt a varázsló automatikusan kiválasztja és tovább lép.

A listában hasonló nevű lap-párok is előfordulhatnak: <lapnév>\$ és <lapnév>\$\_xlnm#\_FilterDatabase. Az utóbbi a szűrés végrehajtásához szükséges segéd-objektum az Excelben, csak itt a segédprogramban a hanyag programozók nem rejtették el. A két munkalap, mellesleg, teljesen azonos.

A Villámnézet és szűrés nyomógomb parancstáblát jelenít meg a kiválasztott munkalap táblázatának első ötven sorával és az adatok szelektálására szolgáló eszközökkel. Az oszlopok szűrőlistáiban álló rendező-utasításokkal virtuálisan rendezhetjük a táblázatot és a művelet után az új sorrend szerinti "első ötven" sort látjuk.

A munkalapok listájának negyedik, *Felhasználó barát név* címkéjű oszlopa a létrehozandó tábla nevének megadására szolgál. Amikor a jelölőnégyzettel kiválasztjuk a munkalapot, akkor a bővítmény ezt a mezőt automatikusan kitölti. A név a tiltott karakterektől megtisztított munkalap-név lesz. A felhasználó ezt a karakterláncot felülírhatja. A tiltott karaktereket a következő táblázat tartalmazza.

| .,:;   | pont, vessző, kettőspont, pontosvessző     |
|--------|--------------------------------------------|
| 1 ` )) | aposztrófok, idézőjel                      |
| / \    | perjel, függőleges vonal, fordított perjel |
| !?     | felkiáltójel, kérdőjel                     |
| & % \$ | és jel, százalékjel, dollárjel             |
| + *    | összeadás jel, csillag                     |
| = < >  | relációs jelek                             |
| ()[]{} | zárójelek                                  |

6. ábra tiltott karakterek a tábla nevében

A Kapcsolódó táblák kijelölése nyomógomb funkcióját később ismertetem. A Befejezés parancsgombra kattintva a segédprogram megkezdi az adatok beolvasását. A művelet fázisait a varázsló Importálás paneljén követhetjük. Ha a művelet végrehajtása nem lehetséges, akkor a varázsló a panel alján hibaüzenetet jelenít meg, ha az importálás megkezdésének nincs akadálya, akkor a varázsló tovább lép és az Importálás parancstáblán követhetjük nyomon a művelet fázisait.

| Imp      | ortálás leállítá     | isa gombra.                                     |                 |                |                       |
|----------|----------------------|-------------------------------------------------|-----------------|----------------|-----------------------|
| <u>/</u> | A töbt               | bi importálás megszakítva                       | Összes<br>Siker | en: 9<br>es: 3 | Megszakítva:<br>Hiba: |
| Rés:     | zletek:<br>Munkaelem | Allapot                                         |                 | Üzen           | et                    |
| Ø        | Bicske               | Sikeresen végrehajtva. 9 240 sor átvitele befej | jeződött.       |                |                       |
| Ø        | Csurgó               | Sikeresen végrehajtva. 18 810 sor átvitele bef  | ejeződött.      |                |                       |
| Ø        | Fonyód               | Sikeresen végrehajtva. 9 900 sor átvitele befej | jeződött.       |                |                       |
| 8        | Hatvan               | Hiba                                            |                 | Hiba r         | észletes adatai       |
| Δ        | Kisbér               | Megszakítva                                     |                 |                | <b>6</b> )            |
| Δ        | Sarkad               | Megszakítva                                     |                 |                |                       |
|          | Sárvár               | Measzakítva                                     |                 |                |                       |

7. ábra a segédprogram negyedik panelja

A bővítmény felülről lefelé haladva, egyenként dolgozza fel a kijelölt objektumokat. A név előtt megjelenített pipa, valamint az Állapot oszlopban álló Sikeres végrehajtás szöveg a tábla létrehozását jelenti.

Az adatok beolvasását az Importálás leállítása parancsgombbal szakíthatjuk meg. A leállítás a már létrehozott táblákra nincs hatással. Az importálást végző segédprogramból a Bezárás parancsgombbal léphetünk ki. A létrehozott táblák, az importálás sorrendjében, a PowerPivot-ablakban állnak.

### az importálandó munkalap tartalma

A bővítmény a kiválasztott munkalap összes adatát beolvassa. A tábla első rekordja a munkalap második adatot tartalmazó sora, első mezője a munkalap első adatot tartalmazó oszlopa lesz. A bővítmény a táblázat első 255 oszlopát olvassa be, tehát a létrehozott tábla mezőinek száma is legfeljebb 255 lehet. Nézzünk egy példát!



8. ábra az importálandó munkalap tartalma

Munkafüzetünk egyetlen munkalapot tartalmaz. Neve: "raktár". A munkalapon két elnevezett tartomány találunk: "városok" és "alkatrészek". Mindkettő első sorában az oszlopnevek állnak. Az importáló varázsló második panelján kiválasztjuk Az első sor adatai alkossák az oszlopfejléceket jelölőnégyzetet, majd a következő lépésben kijelöljük mind a három felkínált objektumot.

| 1 | F1 💽                   | F2    |             | F  | 3 |      | kód        |      | készle | t   |     | kategór | ia       |       |        |    |      |          |        |
|---|------------------------|-------|-------------|----|---|------|------------|------|--------|-----|-----|---------|----------|-------|--------|----|------|----------|--------|
| 1 | város                  |       |             |    |   |      |            | 788  |        | 4   | 158 | м       |          |       |        |    |      |          |        |
| 2 | Vác                    | 20    | 005. 05. 05 |    |   |      |            | 448  |        | 6   | 554 | Z       |          | vár   | 25     |    | dátu | m        |        |
| 3 | Paks                   | 20    | 006. 06. 06 | ι. |   |      |            | 333  |        | 2   | 214 | К       | 4        | Van   | 05     |    | uatu | 2005 05  | 05     |
| 4 | Ózd                    | 20    | 003. 03. 03 |    |   |      |            |      |        | _   |     |         | 1        | vac   |        |    |      | 2005. 05 | 0. 05. |
|   |                        |       |             | 1  |   | ∦ ko | od 💌       | ke   | szlet  | ×.  | ka  | tegoria | 2        | Pak   | s      |    |      | 2006.06  | 5. 06. |
| • | alkatrészek <b>r</b> a | aktár | városok     |    |   | 1    | 788        |      |        | 458 | м   |         | 3        | Ózd   |        |    |      | 2003. 03 | 3. 03. |
|   |                        |       |             |    |   | 2    | 448        |      |        | 654 | z   |         |          | alkat | részek | ra | ktár | városo   | k      |
|   |                        |       |             |    |   | 3    | 333        |      |        | 214 | К   |         | <u> </u> |       |        |    |      |          |        |
|   |                        |       |             |    |   | alka | trészek ra | ktár | város  | ok  |     |         |          |       |        |    |      |          |        |

9. ábra az importálással létrehozott táblák

### táblák a bővítmény ablakában

Minden tábla külön lapon áll. A tábla nevét a lap fülén olvashatjuk. A táblákat válthatjuk egérrel, rámutatással és kattintással, vagy a Ctrl+Page Up/Page Down gyorsbillentyűkkel. Utóbbi lehetőség csak akkor érhető el, ha a kurzor a táblában áll. Miért hol állhatna máshol? Az ablak alsó részében, az úgynevezett számítási területen. De arról majd később lesz szó.

A rekordok között az Excel programban megszokott módokon navigálhatunk. A bővítmény állapotsorában a *Rekord* felirat után állnak a navigáció eszközei, négy parancsgomb az első, az előző, a következő és az utolsó rekordra ugráshoz, valamint egy mező az aktuális rekord sorszámával és az összes rekord számával. Ez a terület nem csak kijelző, de beviteli eszköz is. A bővítmény a beírt sorszámú rekordra ugrik az Enter leütése után.

Mint láttuk, a bővítmény nem akadályozza meg az üres vagy több adattartományt tartalmazó munkalapok importálását. Az üres munkalap egyetlen, F1 nevű mezőt tartalmazó, rekord nélküli, táblát eredményez. A több adattartományt tartalmazó munkalapból a bővítmény elemzésre alkalmatlan táblát hoz létre. Az üres vagy használhatatlan táblákat a tábla fülének menüjéből kiadott utasítással vagy a *Ctrl+D* billentyűparanccsal törölhetjük. Utóbbi lehetőség csak akkor érhető el, ha a kurzor a táblában áll.

### lokális adatkapcsolatok

Az automatikusan létrehozott adatkapcsolatok, a többi PowerPivot objektummal együtt, a munkafüzetben tárolódnak. Ezek az adatkapcsolatok lokálisak, mert csak az őket tartalmazó munkafüzetben használhatók. A lokális adatkapcsolat segítségével újabb objektumokat vonhatunk be az elemzésbe, közösen frissíthetjük az azonos fájlból származó táblákat és módosíthatjuk az áthelyezett forrásállomány elérési útvonalát.

A lokális adatkapcsolatok listáját a bővítmény ablakában a *Kezdőlap, Külső adatok beolvasása, Létező kapcsolatok* utasítással megjeleníthető panel tartalmazza. Először ki kell jelölnünk a használni kívánt adatkapcsolatot, majd a *Megnyitás* gombbal vagy az adatkapcsolatra duplán kattintva jeleníthetjük meg a munkafüzet objektumainak jegyzékét. A *Szerkesztés* parancsgombbal az adatkapcsolat nevét és a munkafüzet elérési útvonalát módosíthatjuk. A *Frissítés* gomb az adatkapcsolat munkafüzetéből származó táblák közös aktualizálására szolgál.

| Létező kapcsolat kiválasztása         Válasszon ki egy olyan adatforrással kialakított kapcsolatot, amely tartalmazza az importálni kívánt adatokat.         Adatforrás-kapcsolat kiválasztása:         A PowerPivot adatkapcsolatai         Image: Second S | Létező kapcsolatok                                                                                                                                 | ?              | × |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---|--|--|--|--|--|
| Adatforrás-kapcsolat kiválasztása:         A powerPivot adatkapcsolatai         2018         Data Source = E:\02 két éve.xlsx         Image: Source = E:\02 három éve.xlsx         Image: Source = E:\02.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Létező kapcsolat kiválasztása<br>Válasszon ki egy olyan adatforrással kialakított kapcsolatot, amely tartalmazza az<br>importálni kívánt adatokat. |                |   |  |  |  |  |  |
| A PowerPivot adatkapcsolatai         2018         Data Source = E:\02 előző év.xlsx         2017         Data Source = E:\02 két éve.xlsx         2016         Data Source = E:\02 három éve.xlsx         Vankafüzet-kapcsolatok         2016         Munkafüzet-kapcsolatok         2017         Munkafüzet: 02. adatkapcsolatok.xlsx         2017         Munkafüzet: 02. adatkapcsolatok.xlsx         2017         Munkafüzet: 02. adatkapcsolatok.xlsx         2017         Munkafüzet: 02. adatkapcsolatok.xlsx         2018         Munkafüzet: 02. adatkapcsolatok.xlsx         V         Togvábbiak tallózása                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Adatforrás-kapcsolat kiválasztása:                                                                                                                 |                |   |  |  |  |  |  |
| 2018         Data Source = E:\02 két éve.xlsx         2017         Data Source = E:\02 két éve.xlsx         2016         Data Source = E:\02 három éve.xlsx         Munkafüzet-kapcsolatok         2016         Munkafüzet: 02. adatkapcsolatok.xlsx         2017         Munkafüzet: 02. adatkapcsolatok.xlsx         2017         Munkafüzet: 02. adatkapcsolatok.xlsx         2017         Munkafüzet: 02. adatkapcsolatok.xlsx         2017         Munkafüzet: 02. adatkapcsolatok.xlsx         2018         Munkafüzet: 02. adatkapcsolatok.xlsx         V         Tgvábbiak tallózása         Megnyitás       Szerkesztés         Frissítés       Törlés                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A PowerPivot adatkapcsolatai                                                                                                                       |                | ^ |  |  |  |  |  |
| 2017         Data Source = E:\02 két éve.xlsx         2016         Data Source = E:\02 három éve.xlsx         Munkafüzet-kapcsolatok         2016         Wunkafüzet: 02. adatkapcsolatok.xlsx         2017         Munkafüzet: 02. adatkapcsolatok.xlsx         2017         Munkafüzet: 02. adatkapcsolatok.xlsx         2018         Munkafüzet: 02. adatkapcsolatok.xlsx         Y         Togvábbiak tallózása                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2018<br>Data Source = E:\02 előző év.xlsx                                                                                                          |                |   |  |  |  |  |  |
| 2016         Data Source = E:\02 három éve.xlsx         Munkafüzet-kapcsolatok         2016         Munkafüzet: 02. adatkapcsolatok.xlsx         2017         Munkafüzet: 02. adatkapcsolatok.xlsx         2018         Munkafüzet: 02. adatkapcsolatok.xlsx         Y         Togvábbiak tallózása                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2017<br>Data Source = E:\02 két éve.xlsx                                                                                                           |                |   |  |  |  |  |  |
| Munkafüzet-kapcsolatok         2016         Munkafüzet: 02. adatkapcsolatok.xlsx         2017         Munkafüzet: 02. adatkapcsolatok.xlsx         2018         Munkafüzet: 02. adatkapcsolatok.xlsx         V         Továbbiak tallózása         Megnyitás       Szerkesztés         Frissítés       Törlés                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2016<br>Data Source = E:\02 három éve.xlsx                                                                                                         |                |   |  |  |  |  |  |
| 2016         Munkafüzet: 02. adatkapcsolatok.xlsx         2017         Munkafüzet: 02. adatkapcsolatok.xlsx         2018         Munkafüzet: 02. adatkapcsolatok.xlsx         Y         Zotl8         Munkafüzet: 02. adatkapcsolatok.xlsx         Y         Zotl8         Munkafüzet: 02. adatkapcsolatok.xlsx         Y         Zotl8         Y         Továbbiak tallózása         Megnyitás       Szerkesztés         Frissítés       Törlés                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Munkafüzet-kapcsolatok                                                                                                                             |                |   |  |  |  |  |  |
| 2017         Munkafüzet: 02. adatkapcsolatok.xlsx         2018         Munkafüzet: 02. adatkapcsolatok.xlsx         Továbbiak tallózása                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2016<br>Munkafüzet: 02. adatkapcsolatok.xlsx                                                                                                       |                |   |  |  |  |  |  |
| 2018         Munkafüzet: 02. adatkapcsolatok.xlsx         Továbbiak tallózása         Megnyitás       Szerkesztés         Frissítés       Törlés                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2017<br>Munkafüzet: 02. adatkapcsolatok.xlsx                                                                                                       |                |   |  |  |  |  |  |
| Továbbiak tallózása         Megnyitás         Szerkesztés         Frissítés         Törlés                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2018<br>Munkafüzet: 02. adatkapcsolatok.xlsx                                                                                                       |                | • |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Továbbiak tallózása <u>M</u> egnyitás <u>S</u> zerkesztés Frissítés                                                                                | <u>T</u> örlés |   |  |  |  |  |  |
| Bezárás                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                    | Bezárás        |   |  |  |  |  |  |

10. ábra a bővítmény lokális adatkapcsolatai

Az automatikusan létrehozott adatkapcsolat önálló objektum. A bővítmény még akkor is megőrzi, ha a munkafüzetéből származó valamennyi táblát töröltük. Eltávolítása felhasználói művelettel, a parancstábla Törlés gombjával történik.

### a táblák mentése

A bővítmény ablakának munka közbeni bezárása nem jár adatvesztéssel. Az ablak újbóli megnyitását követően a PowerPivot objektumok ismét a rendelkezésünkre állnak. A bővítmény ablakát bezárhatjuk az ablak *Bezárás* nyomógombjával, a *Fájl, Bezárás* utasításával vagy az *Alt+F*4 billentyűparanccsal. A PowerPivot ablakában kiadott Fájl, Mentés vagy Mentés másként utasítások egyenértékűek az Excel ablakból kezdeményezett mentés parancsokkal. A munkafüzetet bezáró utasítás a bővítmény ablakát is bezárja.

#### univerzális adatkapcsolat létrehozása

Univerzális, azaz bármely munkafüzetből elérhető, adatkapcsolatot a kapcsolat tulajdonságainak fájlba mentésével hozhatunk létre. Vegyük sorra a megvalósítás lépéseit.

Egy tetszőleges munkafüzetben indítsuk el az adatkapcsolat varázslót a program ablakának Adatok, Külső adatok átvétele, Egyéb forrásból, Az adatkapcsolat varázslóból utasításával.

| Adatkapcsolat varázsló                                                                  | ?      | ×   |
|-----------------------------------------------------------------------------------------|--------|-----|
| Üdvözli az Adatkapcsolat varázsló                                                       |        |     |
| A varázsló segítségével távoli adatforráshoz kapcsolódhat.                              |        |     |
| Milyen típusú adatforráshoz kíván csatlakozni?                                          |        |     |
| Microsoft SQL Server<br>Microsoft SQL Server Analysis Services<br>Windows Azure Piactér |        |     |
| Adatosatorna<br>ODBC adatforrásnév (DSNI)                                               |        |     |
| Microsoft Data Access – OLE DB-szolgáltató Oracle alkalmazásokhoz<br>Egyéb/speciális    |        |     |
|                                                                                         |        |     |
| Mégse < Víšsza <u>T</u> ovább >                                                         | Befeje | zés |

11. ábra az adatkapcsolat varázsló első panelja

A felkínált listájából válasszuk az ODBC *adatforrásnév* (DNS) *adatforrás* elemet és lépjünk *Tovább*. Dupla kattintásos kiválasztással a segédprogram automatikusan megjeleníti a következő panelt.

A varázsló következő panelja két ODBC szoftver tartalmaz. Excel vagy Access? A konkrét fájl a Tovább gombra kattintva, tallózással választhatjuk ki. Ezen a panelon is működik, a dupla kattintásos kiválasztáskor, az automatikus továbblépés.

| Adatkapcsolat varázsló                                                                                                            |                                                                                              |                                                           | ?    | ×            |                             |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------|------|--------------|-----------------------------|--|--|--|--|
| Kapcsolódás ODBC-adatforráshoz         Jelölje ki azt az ODBC-adatforrást, amelyhez kapcsolódni kíván.         ODBC-adatforrások: |                                                                                              |                                                           |      |              |                             |  |  |  |  |
| ODBC-adatforrások:<br>Excel Files                                                                                                 | Munkafüzet választása                                                                        |                                                           |      |              | ×                           |  |  |  |  |
| MS Access Database                                                                                                                | Adatbázis <u>n</u> eve<br>*.xls*<br>02 előző év.xlsx<br>02 két éve.xlsx<br>02 három éve.xlsx | <u>K</u> önyvtár:<br>e:\temp<br>Protection<br>e:\<br>Temp |      | <br>         | DK<br>igse<br>igó<br>asásra |  |  |  |  |
|                                                                                                                                   | Fájl <u>t</u> ípus:<br>Excel fájlok (*.xls*) ▼                                               | <u>M</u> eghajtó:                                         | •    | <u>H</u> áló | zat                         |  |  |  |  |
|                                                                                                                                   | Mégse ≺ <u>V</u> i                                                                           | ssza <u>T</u> ovább >                                     | Befe | jezés        |                             |  |  |  |  |

12. ábra az adatkapcsolat varázsló második panelja

Az Excel munkafüzet kiválasztása után nyomjuk meg az OK gombot, amely mindkét ablakot bezárja és megjeleníti az adatkapcsolat varázsló harmadik paneljét: Adatbázis és tábla kijelölése.

| Adatkapcsolat varázsló                 |           |               |              |          |                  | ?  | ×                |  |  |
|----------------------------------------|-----------|---------------|--------------|----------|------------------|----|------------------|--|--|
| Adatbázis és tábla kijelölése          |           |               |              |          |                  |    |                  |  |  |
| Jelölje ki a kívánt adatoka            | t tartaln | iazó adatbázi | ist, illetve | táblát v | agy kockát.      |    |                  |  |  |
| Vál <u>a</u> ssza ki a kívánt adatokat | t tartalm | azó adatbázi  | st:          |          |                  |    |                  |  |  |
| E:\temp\02 előző év.xlsx               |           | `             | -            |          |                  |    |                  |  |  |
| <u>C</u> satlakozás egy adott táb      | olához:   |               |              |          |                  |    |                  |  |  |
| Név                                    | Leírás    | Módosítva     | Készült      | Típus    |                  |    |                  |  |  |
| 'április eé\$'                         |           |               |              | TABLE    |                  |    |                  |  |  |
| 'augusztus eé\$'                       |           |               |              | TABLE    |                  |    |                  |  |  |
| 🔠 'december eé\$'                      |           |               |              | TABLE    |                  |    |                  |  |  |
| 🔠 'február eé\$'                       |           |               | -            | TABLE    |                  |    |                  |  |  |
| imárcius eé\$                          |           |               |              | TABLE    |                  |    |                  |  |  |
| inovember eé\$'                        |           |               |              | TABLE    |                  |    |                  |  |  |
| 🔠 'október eé\$'                       |           |               |              | TABLE    |                  |    |                  |  |  |
| III 'szeptember eé\$' TABLE            |           |               |              |          |                  |    |                  |  |  |
|                                        |           | Mégse         | < <u>V</u>   | issza    | <u>T</u> ovább > | Ве | feje <u>z</u> és |  |  |
|                                        |           |               |              |          |                  |    |                  |  |  |

13. ábra az adatkapcsolat varázsló harmadik panelja

A parancstábla *Csatlakozás egy adott táblához* feliratú vezérlőjével szabályozhatjuk, hogy az adatkapcsolat a listában kiválasztott egyetlen táblát vagy a munkafüzet összes tábláját tartalmazza. Ha az utóbbit szeretnénk, töröljük a jelölőnégyzet pipáját! A *Tovább* gombra kattintva az adatkapcsolatfájl tulajdonságait adhatjuk meg a varázsló utolsó parancstábláján: *Adatkapcsolatfájl mentése és befejezés*.

| Adatkapcsolat varázsló                                                                                | ?              | $\times$        |
|-------------------------------------------------------------------------------------------------------|----------------|-----------------|
| Adatkapcsolatfájl mentése és befejezés                                                                |                |                 |
| Írja be az új adatkapcsolatfájl nevét és leírását, majd a mentéshez kattintson a<br>Befejezés gombra. |                |                 |
| Fájl <u>n</u> év:                                                                                     |                |                 |
| C:\Users\Lúdas Matyi\Documents\Adatforrások\vevők - 2018.odc                                          | <u>T</u> allóz | ás              |
| ☐ Jelszó mentése fájlba<br>Leírás:                                                                    |                |                 |
| 2018 összes vevője, havi bontásban                                                                    |                |                 |
| Rövid név:                                                                                            |                |                 |
| 2018                                                                                                  |                |                 |
| Kulcsszavak:                                                                                          |                |                 |
| <u>M</u> indig ezzel a fájllal kísérelje meg az adatfrissítést                                        |                |                 |
| Excel Services: Hitelesítési beállítások                                                              |                |                 |
| Mégse < <u>V</u> issza Tovább >                                                                       | Befe           | eje <u>z</u> és |

14. ábra a varázsló negyedik, utolsó panelja

Az adatkapcsolat-fájl nevét és helyét tallózással adhatjuk meg. A program az Adatforrások mappát ajánlja fel tárolásra, amely a Dokumentumok könyvtárban áll. Abszolút elérési útvonala: <rendszermegható>: \Users\<felhasználónév>\Dokuments\Adatforrások.

A varázsló utolsó parancstábláján leírást adhatunk meg a kapcsolt objektumról, nevet adhatunk a kapcsolatnak és az adatkapcsolat-fájl egyéb tulajdonságait állíthatjuk be. A *Befejezés* gombra kattintva a program még felajánlja a táblaválasztást, de ezt utasítsuk el a *Mégse* nyomógombbal.

A létrehozott univerzális adatkapcsolat a PowerPivot ablakból nyitható meg. Kattintsunk a Kezdőlap, Külső adatok beolvasása, Létező kapcsolatok vezérlőre, majd a Továbbiak tallózása... gombra, és a megnyíló Adatforrások mappából választhatjuk ki a fájlt.

| Létező kapcsolatok                                                                                                                                 | ? | × |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
| Létező kapcsolat kiválasztása<br>Válasszon ki egy olyan adatforrással kialakított kapcsolatot, amely tartalmazza az<br>importálni kívánt adatokat. |   |   |
| Adatforrás-kapcsolat kiválasztása:                                                                                                                 |   |   |
| A PowerPivot adatkapcsolatai                                                                                                                       |   |   |
| Nem található kapcsolat.                                                                                                                           |   |   |
| Helyi kapcsolatok                                                                                                                                  |   | _ |
| 2018<br>C:\Users\Lúdas Matyï\Documents\Adatforrások\vevők - 2018.odc                                                                               |   |   |
| Munkafüzet-kapcsolatok                                                                                                                             |   |   |
| Nem található kapcsolat.                                                                                                                           |   |   |

15. ábra az aktivált adatkapcsolat

A tábla importáló varázslót a kapcsolatot kiválasztva a *Megnyitás* paranccsal, vagy dupla kattintással indíthatjuk el. A segédprogram először a kapcsolat leírását tartalmazó, és az összeköttetés ellenőrzését lehetővé tévő panelt jelenít meg. A következő varázsló-panel az importálandó objektumok meghatározásának módjáról dönthetünk. Fogadjuk el a felajánlott *Választás a táblák és nézetek listájáról…* lehetőséget és lépjünk tovább! A következő panelt már ismerjük: *Táblák és nézetek kijelölése*.

Az adatok beolvasása után a kapcsolat átkerül a *Létező kapcsolatok* panel A *PowerPivot adatkapcsolatai* kategoriájába. Végül ne felejtkezzünk el arról a körülményről, hogy a program Adatvédelmi központjának beállításai blokkolhatják az adatkapcsolat-fájl megnyitását!

| Létező kapcsolatok                                                                                                                                 | ? | × |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
| Létező kapcsolat kiválasztása<br>Válasszon ki egy olyan adatforrással kialakított kapcsolatot, amely tartalmazza az<br>importálni kívánt adatokat. |   |   |
| Adatforrás-kapcsolat kiválasztása:                                                                                                                 |   |   |
| A PowerPivot adatkapcsolatai                                                                                                                       |   | _ |
| <b>2018</b><br>Initial Catalog = C:\temp\02 előző év.xlsx                                                                                          |   |   |
| Helyi kapcsolatok                                                                                                                                  |   | _ |
| Nem található kapcsolat.                                                                                                                           |   |   |
|                                                                                                                                                    |   |   |

16. ábra a bővítmény által módosított kapcsolati panel

# adattípusok

# a DAX adattípusai

A homogenizálás eredményeként a tábla egyes mezőiben már azonos adattípusú bejegyzések állnak. A felhasználó módosíthatja, a konvertálási lehetőségek szabta határokon belül, az egyes mezők automatikus adattípusát.

| Szöveg (Text)                      | Egy Unicode-karakterekből álló karakterlánc. Maximális hossza 268 435 456<br>Unicode-karakter, másként 536 870 912 bájt.                                                                                                                                                          |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IGAZ/HAMIS (TRUE/FALSE)            | IGAZ és HAMIS (TRUE, FALSE) értékek.                                                                                                                                                                                                                                              |
| Pénznem (Currency)                 | A pénznem adattípus -922 337 203 685 477,5808 és 922 337 203 685 477,5807<br>közötti érték, négy tizedesjegy pontossággal. A törtrész számjegyeinek száma<br>legfeljebb négy lehet. HUF pénznem jelölővel.                                                                        |
| Egész szám (Whole Number)          | Egy -2^63 és 2^63-1 közé eső 64 bites egész szám.                                                                                                                                                                                                                                 |
| Tizedes tört szám (Decimal Number) | Egy 64 bites valós szám, amelynek értéktartománya [1] negatív érték ese-<br>tén -1,79E+308 és -2,23E-308 között, [2] a nulla és [3] pozitív érték esetén<br>2,23E-308 és 1,79E+308 között. Az értékes számjegyek száma legfeljebb<br>tizenhét lehet, a további számjegyek nullák. |
| Dátum (Date)                       | Dátum időponttal                                                                                                                                                                                                                                                                  |

17. ábra a DAX adattípusai

A bővítmény a táblázat képleteit nem importálja, csak a kifejezések aktuális eredményét olvassa be a táblákba. Ha a forrás-kifejezés értéke módosul, akkor az új adat csak frissítés után fog megjelenni a PowerPivot ablakban.

# az adattípus megállapítása

A bővítmény a mező adattípusának meghatározásakor csak a forrás oszlop első nyolc celláját vizsgálja. Az üres cellák az elemzés eredményét nem befolyásolják. A nyolc üres cellával kezdődő oszlop adattípusa Szöveg lesz. A forrás adatait a bővítmény saját adattípusai szerint kategorizálja.

| szöveg            | karakterlánc<br>aposztróffal beírt szám<br>szövegként formázott szám<br>hibaérték                                              |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------|
| IGAZ / HAMIS      | logikai érték                                                                                                                  |
| pénznem           | pénznem                                                                                                                        |
| tizedes tört szám | egész szám<br>tizedes tört<br>természetes tört<br>százalék<br>normál alakú szám<br>egyéni kóddal formázott szám, pénz és dátum |
| dátum             | dátum<br>időpont                                                                                                               |



Szöveg adattípusúnak tekinti a bővítmény a forrás oszlopban álló karakterláncokat, aposztróffal beírt számokat, szövegként formázott számokat és a hibaértékeket.

A bővítmény IGAZ/ HAMIS adattípusú mezőt hoz létre a logikai értékeket tartalmazó oszlopnak. Pénzem adattípusú mezőbe kerül minden olyan szám, amely az Excel valamely pénznem jelölőjével van formázva.

Az egész számokat, tizedes törteket, százalékokat, tört számokat és normál alakban felírt számokat tartalmazó oszlop tizedes tört szám adattípusú mezőt eredményez. Az összes egyéni kóddal formázott számot, pénzt és dátumot a PowerPivot szintén tizedes tört számként importálja. A bővítmény még akkor is tizedes tört szám adattípusúra állítja be a mezőt, ha a forrás oszlop egyetlen törtszámot sem tartalmaz.

A dátumokat és az időpontokat a PowerPivot dátum adattípusú mezőbe olvassa be.

A mező adattípusa az első nyolc cella leggyakoribb adattípusa lesz. Ha két adattípus egyenlő számban fordul elő, akkor az adattípusok erősorrendje dönt: Szöveg > IGAZ/HAMIS > Pénznem > Tizedes tört szám > Dátum.

### a mező homogenizálása

Miután a bővítmény az első nyolc cella tartalma alapján meghatározta a létrehozandó mező adattípusát, az oszlop további adatait ennek megfelelően kell átalakítania. Tekintsük át, hogyan egységesíti a bővítmény az adattípusnak megfelelően a mező bejegyzéseit.

Szöveg adattípusú mező: minden adat eredeti formájában beolvasásra kerül, beleértve a hibaértékeket is. Egyetlen kivétel a nem vezérlőpult szerinti formátumú pénznem, amely pénznem jelölő nélkül importálódik. A karakterláncok a mezőben balra igazítva jelennek meg. A karakterláncot megelőző és az azt követő szóközök nem kerülnek importálásra.

IGAZ/HAMIS adattípusú mező: a pénzek, a számok és a dátumok IGAZ értékre konvertálódnak. A szövegek és a hibaértékek nem kerülnek importálásra. A logikai értékek a mezőben középre igazítva jelennek meg.

Pénznem adattípusú mező: a pénzek, a számok és a dátumok, beleértve az időpontokat is, négy tizedesjegyre kerekítve, a vezérlőpult szerinti pénznem formátumban kerülnek beolvasásra. A szövegek, a logikai értékek és a hibaértékek nem kerülnek importálásra. A pénzek a mezőben jobbra igazítva jelennek meg.

Tizedes tört szám adattípusú mező: a számok, a pénzek, a dátumok és időpontok csonkolás nélkül, számként kerülnek beolvasásra. A szövegek, a logikai értékek és hibaértékek nem kerülnek importálásra. A mezőben a számok jobbra igazítva jelennek meg.

Dátum adattípusú mező: a pénzek, a számok, a dátumok és az időpontok <rövid dátum><szóköz><hosszú idő> formátumban fognak megjelenni. A szövegek, a logikai értékek és hibaértékek nem kerülnek importálásra. A dátumok a mezőben jobbra igazítva jelennek meg.

| eredeti adat | Szöveg     | IGAZ/HAMIS | Pénznem       | Tizedes tört szám | Dátum               |
|--------------|------------|------------|---------------|-------------------|---------------------|
| papír        | papír      |            |               |                   |                     |
| HAMIS        | HAMIS      | HAMIS      |               |                   |                     |
| 3,145873 Ft  | 3,15 Ft    | IGAZ       | 3,15 HUF      | 3,145873          | 1900-01-03 3:30:03  |
| 70,70 USD    | 70,70      | IGAZ       | 70,70 HUF     | 70,7              | 1900-03-10 16:48:00 |
| 13           | 13         | IGAZ       | 13,00 HUF     | 13                | 1900-01-13 0:00:00  |
|              |            |            |               |                   |                     |
| 13,54789     | 13,54789   | IGAZ       | 13,55 HUF     | 13,54789          | 1900-01-13 13:08:57 |
| 1955.05.05   | 1955.05.05 | IGAZ       | 20 214,00 HUF | 20214             | 1955-05-05 0:00:00  |
| 13:50        | 13:50      | IGAZ       | 0,58 HUF      | 0,576388888       | 1899-12-30 13:50:00 |
| #ZÉRÓOSZTÓ!  | #DIV/o!    |            |               |                   |                     |
| #NÉV?        | #NAME?     |            |               |                   |                     |

19. ábra

különböző cellatartalmak importálása meghatározott adattípusú mezőbe

A bővítmény a háttérben, a programhoz hasonlóan, a dátumokat sorszámként, az időpontokat nulla és egy közé eső törtszámként kezeli. A dátum adattípusú mezőbe beolvasott nulla 1900.01.01.

dátummá konvertálódik. A bővítmény kezelni tudja a történelmi dátumokat is, ezért a dátum adattípusú mezőbe importált negatív számok is dátummá lesznek átalakítva.

A mínusz egyet a PowerPivot 1899.12.30. dátumra konvertálja. Tehát az 1899.12.31. munkafüzetből származó adatok konvertálásakor nem fordulhat elő. Az egész rész nélküli tizedes törteket a bővítmény időpontra alakítja át, majd az 1899.12.30. dátummal egészíti ki. A legkorábbi képezhető dátum az időszámításunk kezdete, tehát 0001.01.01., ami -693 593-nak felel meg.



20. ábra számok importálása dátum adattípusú mezőbe

Az importálással létrehozott új tábla üres rekordokat is tartalmazhat. Ennek oka a beolvasott táblázat végén álló sorok korábbi törlése. A hiba csak akkor jelentkezik, ha az eltávolítás a *Tartalom törlése* utasítással vagy a *Del* billentyűvel történt. Mivel a PowerPivot ablakban rekordot nem törölhetünk, ezért a hibát a programban vagy az importálás során kell orvosolnunk. Töröljük a táblát! Hozzunk létre a forrásból adatbázis-táblázatot és ennek adatait olvastassuk be a bővítménnyel! A másik lehetőség a táblázat sorainak szűrése az importálás meghatározott fázisában.

| 1  | Α      | В        | С      |    |       |        |        |
|----|--------|----------|--------|----|-------|--------|--------|
| 1  | betűk  | számok   | színek |    |       | -      |        |
| 2  | С      | 5        | sárga  |    | A     | В      | C      |
| 3  | С      | 3        | barna  | 1  | betük | számok | szinek |
| 4  | н      | 1        | fehér  | 2  | С     | 5      | sárga  |
| 5  | 1      | 1        | cárna  | 3  | С     | 3      | barna  |
| -  | -      | -        | saiga  | 4  | н     | 1      | fehér  |
| 0  | F      | 9        | Saiga  | 5  | 1     | 1      | sárga  |
| /  | E      | 6        | zold   | 6  | F     | 9      | sárga  |
| 8  | G      | 7        | kék    | 7  | F     | 6      | zöld   |
| 9  | F      | 9        | barna  | 0  | c c   | 7      | kák    |
| 10 | G      | 2        | barna  | 0  |       | ,      | NEN    |
| 11 | В      | 3        | kék    | 9  | 7     | 9      | barna  |
| 12 | н      | 1        | fehér  | 10 | G     | 2      | barna  |
| 13 | F      | 3        | fehér  | 11 |       |        |        |
| 14 | -<br>D | 0        | harna  | 12 |       |        |        |
| 14 | 5      | <b>v</b> | oania  | 13 |       |        |        |
|    |        |          |        | 14 |       |        |        |

|    | betűk 💌 | számok 🔽 | színek 🔽 |
|----|---------|----------|----------|
| 1  | С       | 5        | sárga    |
| 2  | С       | 3        | barna    |
| 3  | н       | 1        | fehér    |
| 4  | 1       | 1        | sárga    |
| 5  | F       | 9        | sárga    |
| 6  | E       | 6        | zöld     |
| 7  | G       | 7        | kék      |
| 8  | F       | 9        | barna    |
| 9  | G       | 2        | barna    |
| 10 |         |          |          |
| 11 |         |          |          |
| 12 |         |          |          |
| 13 |         |          |          |

21. ábra a tartalom törlése művelet következtében kialakuló üres rekordok

# szelektív importálás

# a villámnézet ablaka

A Tábla importálása varázsló eszközeivel nemcsak a munkafüzet importálandó lapjait választhatjuk ki, de az egyes táblázatok oszlopait és sorait is szelektálhatjuk. A beolvasandó táblázat-elemek körének meghatározására a varázsló harmadik, Táblák és nézetek kijelölése feliratú panelján nyílik lehetőség. A szelektálás a Villámnézet és szűrés nyomógombbal megjeleníthető felületen történik.

| bla                     | importálása varázsló                                                                        |                                                             |                                                               | ?                                       | × |
|-------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------|---|
| i <b>vál</b><br>A<br>a: | asztott tábba villámnézete<br>jelölőnégyzet segítségével v<br>z oszlop legördülő listájának | válassza ki a kívánt oszlopo<br>nyíl gombját, és válassza k | kat. Egy oszlop adatainak sz<br>i a szűrésben szerepeltetni k | űréséhez használja<br>cívánt értékeket. |   |
| Táb                     | lázat neve: javítások\$                                                                     |                                                             |                                                               |                                         |   |
| <b>V</b>                | 🗹 munkatárs neve  🔽                                                                         | 🗹 születési dátum 🛛 🔽                                       | 🗹 személyi szám 🛛 🔽                                           | 🗹 anyja neve 🛛 🔹                        | 1 |
| 5                       | Pados Patrícia                                                                              | 1986. 06. 09. 0:00:00                                       | 28606097261                                                   | Csányi Erzsébet                         |   |
| 6                       | Szigetvári Domonkos                                                                         | 1978. 04. 14. 0:00:00                                       | 17804143373                                                   | Gosztonyi Erzsébet                      |   |
| 7                       | Keszler Tódor                                                                               | 1980. 02. 04. 0:00:00                                       | 180020443 R                                                   | ekord: 5., összesen 50                  |   |
| 8                       | Márkus Ferenc                                                                               | 1983. 04. 08. 0:00:00                                       | 18304073183                                                   | Sasvári Dóra                            | Ŭ |
| 9                       | Méhes Viktória                                                                              | 1982. 11. 03. 0:00:00                                       | 28211039837                                                   | Fitos Matild                            |   |
| 10                      | Gyulai Márkus                                                                               | 1993. 02. 03. 0:00:00                                       | 19302035874                                                   | Somogyi Renáta                          |   |
| 11                      | Petrás Vince                                                                                | 1996. 08. 04. 0:00:00                                       | 19608048545                                                   | Engi Emilia                             |   |
| 12                      | Bódi Laura                                                                                  | 1983. 11. 25. 0:00:00                                       | 28311252056                                                   | Gyurkovics Zsófia                       |   |
| <                       |                                                                                             |                                                             |                                                               | :                                       | > |
| So                      | rs <u>z</u> űrők törlése                                                                    |                                                             |                                                               | OK Mégs                                 | e |

22. ábra a villámnézet ablaka

A forrás-táblázat első ötven rekordját mutató villámnézet panelja nem rendelkezik teljes méret nyomógombbal, sőt az ablak bal felső sarkának helyi menüjében is elérhetetlen ez a parancs. Az ablak nagyítása csak a szegélyek húzásával lehetséges. A navigálás az Excel ablakban megszokott eszközökkel történik. Egyedül a vízszintes lapozás Alt+Page Up/Page Down billentyűparancsa hiányzik. Kárpótlásul, kapjuk, a CTRL+egérgörgő funkciót, amely más Microsoft szoftverekben a nagyítás eszköze, itt viszont a kép vízszintes mozgatója.

### az oszlopok szelektálása

Az oszlopok kijelölése az oszlopnevek felett megjelenő, lefelé mutató fekete nyíllal történik. Az öszszes oszlopot a Ctrl+A billentyűparanccsal jelölhetjük ki.

Az oszlopok szélességét megadhatjuk hozzávetőlegesen, az oszlopnevek jobb oldali szegélyének húzásával, vagy pontosan az oszlopnév menüjének parancsával. Az alkalmazott mértékegység a képpont. Az oszlopnév jobb oldali szegélyére duplán kattintva a bővítmény a legszélesebb tartalomhoz igazítja az oszlop szélességét.

A kijelölt oszlop nevén az egérmutató négyirányú nyíllá alakul át, jelezve az oszlop áthelyezhetőségét. Tehát a villámnézet nemcsak a sorok egyéni rendezését, de az oszlopok felhasználói sorrendjének kialakítását is lehetővé teszi. A felsorolt lehetőségek csak az adatok jó megjelenítését szolgálják, magára az importálásra és a tábla-készítésre nincsenek befolyással.

Az importálandó oszlopok kiválasztása az oszlopnevek előtt álló jelölőnégyzettel történik. A kipipált oszlopok a táblába kerülnek. Az aktuális oszlop jelölőnégyzetét a Ctrl+szóköz billentyűvel is vezérelhetjük. A panel bal felső sarkában álló jelölőnégyzet az összes oszlop pipáját törli, illetve az összes oszlopot kipipálja. A vezérlőben pici szürke négyzet jelenik meg, ha egy vagy több oszlopot kihagyunk az importálásból.

### a sorok szelektálása

A villámnézet szűrés-arzenálja szerényebb, mint az Excelé. Az oszlopnevek cellájából lenyitható szűrőlisták felépítése, a forrás adattípustól függetlenül azonos: három rendező utasítás, az oszlop szűrőjének törlője, az oszlop adattípusának megfelelő reláció-lista és a gyorsszűrő az oszlop egyedi bejegyzéseivel.

A Szövegszűrők és a Számszűrők feliratú relációs-listák elemeire kattintva az Egyéni szűrők parancstábla jelenítik meg, ahol legfeljebb két szűrőfeltételt határozhatunk meg. A feltételek logikai ÉS vagy logikai VAGY viszonyban állhatnak egymással. Logikai ÉS viszonyban mindkét feltételnek, a VAGY viszonyban legalább az egyik feltételnek teljesülnie kell az importáláshoz.

A szövegszűrő karakterláncában nem csak konkrét karakterek, de karakter-csoportot meghatározó kód is állhat.

| [ a-z ]   | egy betű                                  |
|-----------|-------------------------------------------|
| [ 0-9 ]   | egy szám                                  |
| [a-z;0-9] | egy karakter                              |
| [ d-n ]   | egy betű az ABC megadott tartományából    |
| [ 3-7 ]   | egy szám a számsor megadott tartományából |
| [ aou ]   | egy betű a felsoroltak közül              |
| [ 159 ]   | egy szám a felsoroltak közül              |
| [ !d-n ]  | betűk kizárása                            |
| [!3-7]    | számok kizárása                           |

23. ábra

a szöveg adattípusú oszlop szűrőjében használható, karakter-csoportot meghatározó kódok

A lényeget összefoglalva. [1] A karakter-csoportot meghatározó kód szögletes zárójelek között áll. [2] A felkiáltójel a kizárás jele. [3] Egy karakterre több deklaráció is megadható. A meghatározásokat pontosvesszővel kell elválasztanunk. [4] Karakter-definícióként a szögletes zárójelet szögletes zárójelek között kell begépelnünk.

A szűrőlista alján olvasható Nem minden elem látható felirat azt jelzi, hogy az egyedi értékek magas száma miatt a bővítmény csak az első ezeregy egyedi bejegyzést jelenítette meg a gyorsszűrő listájában.

| 999       |                   |                                   |
|-----------|-------------------|-----------------------------------|
| ✓ 1000    |                   |                                   |
| ✓ 1001    |                   |                                   |
|           |                   |                                   |
| A Nemmino | len el em látható |                                   |
|           |                   |                                   |
|           |                   | A DESCRIPTION AND A REPORT OF THE |

24. ábra a gyorsszűrő alatt megjelenő figyelmeztetés

A villámnézet ablakában a kijelöléses szűrés funkció is használható. A rámutatással és kattintással kiválasztott cella tartalmával azonos bejegyzések sorait tudjuk leválgattatni a cella menüjének Szűrő, Szűrés a kijelölt cellaérték alapján parancsával.

| ibla<br>i <b>vál</b><br>A<br>h<br>é | importálása varázsló<br>l <b>asztott tábla villámn</b><br>i jelölőnégyzet segítsé<br>asználja az oszlop lej<br>rtékeket. | <b>ázete</b><br>śgével válassza ki a kív<br>gördülő listájának nyíl g | vánt oszlopokat.<br>gombját, és vála: | Egy os<br>ssza k | szlop adatainak szűrés<br>i a szűrésben szerepe | ?<br>séhez<br>Itetni kívánt | × |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------|------------------|-------------------------------------------------|-----------------------------|---|
| Táb                                 | olázat neve: <b>javításo</b>                                                                                             | k\$                                                                   |                                       |                  |                                                 |                             |   |
| <ul> <li>✓</li> </ul>               | 🔻 rendszám 🛛 💽                                                                                                           | 🗹 típus 🛛 🔽                                                           | 🗹 szervizből                          |                  | 🗹 számla 🛛 🔽                                    | 🗹 sajáthibás  🔽             | ^ |
| 1                                   | MPI-909                                                                                                                  | Opel Astra                                                            | 2007. 07. 24. 0:                      | 00:00            | 244900                                          | IGAZ                        |   |
| 2                                   | BHQ-472                                                                                                                  | Chovrolat Cruza                                                       | 2007 07 24 0                          | 00.00            | 390200                                          | HAMIS                       |   |
| 3                                   | UCU-59 Szűrő                                                                                                             |                                                                       | •                                     | ×                | Szűrő törlése a követk                          | ezőből: rendszám            |   |
| 4                                   | UYV-076                                                                                                                  | Opel Antara                                                           | 2007. 07. 16. 0:                      |                  | Szűrés a kijelölt cellaé                        | rték alapján                |   |
| 5                                   | IBY-325                                                                                                                  | Citroen C4                                                            | 2007. 08. 03. 03                      | 00:00            | 481900                                          | HAMIS                       |   |
| 6                                   | HYZ-268                                                                                                                  | Chevrolet Cruze                                                       | 2007. 08. 11. 0:                      | 00:00            | 983800                                          | HAMIS                       |   |
| 7                                   | OGH-586                                                                                                                  | Peugeot 508                                                           | 2007. 08. 01. 0:                      | 00:00            | 246700                                          | HAMIS                       |   |
| <                                   |                                                                                                                          |                                                                       |                                       |                  |                                                 | >                           |   |
| So                                  | orszűrők törlése                                                                                                         |                                                                       |                                       |                  |                                                 | OK Mégse                    |   |

25. ábra kijelöléses szűrés a villámnézet ablakában

Egy adott oszlop szűrőjét törölhetjük az oszlop szűrőlistájában álló vagy az oszlop tetszőleges cellájában megjeleníthető menü utasításával. A villámnézet ablakának bal alsó sarkában álló Sorszűrök törlése gombbal a táblázat összes beállított szűrője eltávolítható.

A sorok szelektálásának feltételeit jóváhagyva, a Táblák és nézetek kijelölése panelen az Alkalmazott szűrők linkre kattintva, megtekinthetjük az importálás teljes deklarációját. A megjelenített szöveg nem szerkeszthető!

| ájlnév  | : E:\temp\feladatok\04 javítás                                                                                                       | sok.xlsx                                                                                                               |                                                          |
|---------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| áblák ( | és <u>n</u> ézetek:                                                                                                                  |                                                                                                                        |                                                          |
|         | Forrástábla                                                                                                                          | Felhasználóbarát név                                                                                                   | Szűrő részletei                                          |
| ⊿  ⊞    | javítások\$                                                                                                                          | javítások                                                                                                              | Alkalmazott szűrők                                       |
|         | Szürő részletei<br>Kiválasztott oszlopok: mi<br>rendszám, szervizből, szi<br>Alkalmazott szűrő: (([oszt<br>OR (losztálv] = 'számvite | unkatárs neve, személyi szám, o<br>ámla<br>iály] = 'ellenőrzési') OR ([osztály]<br>li')) AND (([típus] = 'Audi A4') OF | <pre>? X sztály, típus, = 'pénzügyi') t ([típus] =</pre> |

26. ábra az importálás deklarációja

Az adatok beolvasása után, a PowerPivot ablakban a szűrök módosíthatók és az importálásból kizárt rekordok utólagosan is hozzáadhatók a táblához.

# szövegfájl importálása

## fogalmak

A táblázatos adatkezelő programok leggyakoribb adatcsere-formátuma a formázást nem tartalmazó szövegfájl. Kiterjesztése "txt". Tehát, van két programunk, amelyek közvetlenül nem tudják egymás adatait olvasni, ezért az egyik program a "táblázatát" txt-be exportálja, majd a másik program a txt-t importálással "táblázattá" alakítja vissza. A szövegfájl minden sora azonos számú adatot tartalmaz meghatározott karakterrel elválasztva, vagy szóközökkel valóságos oszlopokat képezve. A szövegfájl tartalmazhatja az oszlopneveket is. A bővítmény csak a karakterrel elkülönített adatokat tartalmazó állományok importálására alkalmas, a szóközökkel oszlopokba rendezett típust nem tudja kezelni.

### beolvasás

A szövegfájl beolvasását is a bővítmény ablakából kezdeményezzük: Kezdőlap, Külső adatok beolvasása, Más forrásból, Szövegfájlok, Szövegfájl.

Az importáló varázsló szövegfájl modulja egyetlen lapon tartalmazza a kapcsolat elnevezésére, a beolvasandó állomány meghatározására, illetve a rekordok szelektálására szolgáló vezérlőket. A fájl kiválasztása a szokásos *Tallózás…* funkcióval történik. Az *Oszlopelválasztó* listából kell kiválasztanunk a text-fájlban alkalmazott szeparáló karaktert. Ha erről nincs információnk, akkor egyesével kell kipróbálnunk a lista elemeit és figyelni a villámnézetet, melyiknél kapunk azonos típusú adatokkal feltöltött oszlopokat. Amennyiben a forrás tartalmazza a oszlop-neveket, akkor jelöljük be az *Első sor elemeinek…* jelölőnégyzetet.

| Tábla importá          | ilása varázsló                                  |                                                  |                    |            |        | ?                 | Х |
|------------------------|-------------------------------------------------|--------------------------------------------------|--------------------|------------|--------|-------------------|---|
| Kapcsolódá<br>Adja meg | <b>s strukturálatlan f</b><br>az adatok struktu | <b>lájlhoz</b><br>ırálatlan fájlból való beolvas | ásához szükséges a | adatokat.  |        |                   |   |
| Kap <u>c</u> solat fe  | elhasználóbarát n                               | eve: adattípus meghatároza                       | ás                 |            |        |                   |   |
| <u>F</u> ájl elérési   | útja:                                           | E:\temp\05 adatt ipus                            | meghatározás.txt   |            |        | Talló <u>z</u> ás |   |
| <u>O</u> szlopelvá     | lasztó:                                         | Tabulátor (t)                                    |                    |            | $\sim$ | <u>S</u> peciáli  | s |
| ✓ Első sor             | elemeinek haszn                                 | álata oszlopfejlécként                           |                    |            |        |                   |   |
| 🔽 🗹 ind                | ex 🔽 🗹 szi                                      | öveg1 🔽 🗹 szöveg2 📘                              | 🛛 🗹 szám1 💽        | 🗹 szám2  🔽 | 🔽 pér  | z 💌               | ^ |
| 1                      | 1                                               | papucs                                           | 123                | 654        |        | 123               |   |
| 2                      | 2                                               | papucs                                           | 123                | 654        |        | 123               |   |
| 3                      | 3                                               | papucs                                           | 123                | 654        |        | 123               |   |
| 4                      | 4                                               | PROUCS                                           | 123                |            |        | 123               |   |

27. ábra szövegfájl importálásakor megjelenített panel

Ha a villámnézetben a szövegek helytelenül jelennek meg, vagy a bővítmény egyetlen oszlopot sem ismer fel, akkor a *Speciális* gombra kattintva megadhatjuk a szövegfájl létrehozásakor alkalmazott, ország-függő kódolási rendszert. Ha nem ismerjük az állomány létrehozásának körülményeit, akkor sajnos csak a "próba-szerencse" módszert tudjuk alkalmazni.

Az oszlopok és a sorok szelektálása a munkafüzet importálásakor megismert módon és lehetőségekkel történik. A létrehozott tábla automatikusan a szövegfájl nevét kapja.

### sajátosságok

Amennyiben van befolyásunk az importálandó szövegfájl típusára, akkor a tabulátorral tagolt formátumot válasszuk! Ez a típus okozza importáláskor a legkevesebb problémát. A továbbiakban csak az ebben a formátumban álló adatok beolvasását ismertetem. Természetesen a megállapítások nagy része más típusú szövegfájlra is érvényes.

Az adattípus megállapításánál a bővítmény az oszlop első huszonöt adatát elemzi. Megkülönböztet szöveget, egész és tört számot valamint dátumot. Az elemzéskor a logikai értékek szövegnek, a pénzek egész vagy tört számnak, az időpontok dátumnak minősülnek. A mező adattípusa az első huszonöt bejegyzésben leggyakrabban előforduló típus lesz. Ha két adattípus egyenlő számban fordul elő, akkor az adattípusok rangsora dönt: szám > dátum > szöveg. A hiányzó bejegyzések az adattípus-meghatározást nem befolyásolják. Az első huszonöt helyen adatot nem tartalmazó oszlop adattípusát a bővítmény Szöveg típusúra állítja be. Ha az oszlop első huszonöt számbejegyzése közül akár egy is tört szám, akkor a mező adattípusa Tizedes tört szám, különben Egész szám adattípusú lesz.

A csak TRUE és FALSE bejegyzéseket tartalmazó, szöveg adattípusú mező adattípusát IGAZ/ HAMIS adattípusra, a számként beolvasott adatokat Pénznem típusra állíthatjuk át a menüszalag Kezdőlap, Formátum csoportjának Adattípus listájával.

| inde                                                                                                                | ex                                     | Egész szám                                                                                                             | Tizedes tört szám                                                                                                                   | Dátum                                                                                                                                       | Szöveg                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                                                   |                                        | 5555                                                                                                                   | 55,55                                                                                                                               | 2005.05.05                                                                                                                                  | ötösök                                                                                                                                                                                               |
| 2                                                                                                                   |                                        | 5555                                                                                                                   | 55,55                                                                                                                               | 2005.05.05                                                                                                                                  | ötösök                                                                                                                                                                                               |
| 3                                                                                                                   | ~ _                                    | 5555                                                                                                                   | 55,55                                                                                                                               | 2005.05.05                                                                                                                                  | ötösök                                                                                                                                                                                               |
| 24                                                                                                                  | $\sim$                                 | 2225                                                                                                                   | 55,55                                                                                                                               | 2005.05.05                                                                                                                                  | ötösök                                                                                                                                                                                               |
| 25                                                                                                                  |                                        | 5555                                                                                                                   | 55,55                                                                                                                               | 2005.05.05                                                                                                                                  | ötösök                                                                                                                                                                                               |
| 26                                                                                                                  |                                        | 55,55                                                                                                                  | 5555                                                                                                                                | 5555                                                                                                                                        | 5555                                                                                                                                                                                                 |
| 27                                                                                                                  |                                        | 2005.05.05                                                                                                             | 2005.05.05                                                                                                                          | 55,55                                                                                                                                       | 55,55                                                                                                                                                                                                |
| 28                                                                                                                  |                                        | ötör                                                                                                                   | ötör                                                                                                                                | ötör                                                                                                                                        | 2005 05 05                                                                                                                                                                                           |
|                                                                                                                     |                                        | 0103                                                                                                                   | 0105                                                                                                                                | 0105                                                                                                                                        | 2003.03.03                                                                                                                                                                                           |
|                                                                                                                     | index 🔽                                | v egész szám ▼                                                                                                         | vitis<br>✓ tizedes tört szám ▼                                                                                                      | v dátum                                                                                                                                     | v v szöveg v                                                                                                                                                                                         |
| 22                                                                                                                  | index 🔽<br>22                          | vitos<br>✓ egész szám<br>5555                                                                                          | vius<br>✓ tizedes tört szám<br>55,55                                                                                                | √ dátum<br>2005. 05. 05. 0:0                                                                                                                | v szöveg v<br>10:00 ötösök                                                                                                                                                                           |
| 22<br>23                                                                                                            | index 22<br>23                         | ✓ egész szám ▼<br>5555<br>5555                                                                                         | vitos<br>✓ tizedes tört szám<br>55,55<br>55,55                                                                                      | √ dátum<br>2005. 05. 05. 0:0<br>2005. 05. 05. 0:0                                                                                           | <ul> <li>✓ szöveg ▼</li> <li>10:00 ötösök</li> <li>10:00 ötösök</li> </ul>                                                                                                                           |
| 22<br>23<br>24                                                                                                      | index 22<br>23<br>24                   | <ul> <li>✓ egész szám ▼</li> <li>5555</li> <li>5555</li> </ul>                                                         | vtis<br>▼ tizedes tört szám<br>55,55<br>55,55<br>55,55                                                                              | <ul> <li>✓ dátum</li> <li>2005. 05. 05. 05. 0:0</li> <li>2005. 05. 05. 0:0</li> <li>2005. 05. 05. 0:0</li> </ul>                            | <ul> <li>✓ szöveg ▼</li> <li>0:00 ötösök</li> <li>000 ötösök</li> </ul>                                                                                                                              |
| 22<br>23<br>24<br>25                                                                                                | index 22<br>23<br>24<br>25             | <ul> <li>✓ egész szám ▼</li> <li>5555</li> <li>5555</li> <li>5555</li> <li>5555</li> </ul>                             | vtis<br>▼ tizedes tört szám<br>55,55<br>55,55<br>55,55<br>55,55                                                                     | <ul> <li>✓ dátum</li> <li>2005. 05. 05. 05. 0:0</li> <li>2005. 05. 05. 0:0</li> <li>2005. 05. 05. 0:0</li> <li>2005. 05. 05. 0:0</li> </ul> | <ul> <li>▼ ✓ szöveg ▼</li> <li>0:00 ötösök</li> <li>000 ötösök</li> <li>0:00 ötösök</li> </ul>                                                                                                       |
| <ul> <li>✓</li> <li>✓</li> <li>✓</li> <li>22</li> <li>23</li> <li>24</li> <li>25</li> <li>26</li> </ul>             | index 22<br>23<br>24<br>25<br>26       | v egész szám                                                                                                           | vtos<br>▼ tizedes tört szám<br>55,55<br>55,55<br>55,55<br>55,55<br>55,55<br>55,55                                                   | <ul> <li>✓ dátum</li> <li>2005. 05. 05. 05. 0:0</li> <li>2005. 05. 05. 0:0</li> <li>2005. 05. 05. 0:0</li> <li>2005. 05. 05. 0:0</li> </ul> | ▼         szöveg ▼           0:00         ötösök           0:00         ötösök           0:00         ötösök           0:00         ötösök           0:00         ötösök           5555         5555 |
| <ul> <li>✓</li> <li>✓</li> <li>✓</li> <li>22</li> <li>23</li> <li>24</li> <li>25</li> <li>26</li> <li>27</li> </ul> | index 22<br>23<br>24<br>25<br>26<br>27 | <ul> <li>✓ egész szám ▼</li> <li>5555</li> <li>5555</li> <li>5555</li> <li>5555</li> <li>5555</li> <li>5555</li> </ul> | <ul> <li>✓ tizedes tört szám ▼</li> <li>55,55</li> <li>55,55</li> <li>55,55</li> <li>55,55</li> <li>55,55</li> <li>55,55</li> </ul> | <ul> <li>✓ dátum</li> <li>2005. 05. 05. 05. 0:0</li> <li>2005. 05. 05. 0:0</li> <li>2005. 05. 05. 0:0</li> <li>2005. 05. 05. 0:0</li> </ul> | ▼         szöveg           ▼         szöveg           0:00         ötösök           0:00         ötösök           0:00         ötösök           0:00         ötösök           5555         55,55     |

28. ábra adatok beolvasása különböző adattípusú mezőkbe (felül a forrás, alul a tábla)

A mező adattípusának meghatározása után a beolvasandó adatok homogenizálására kerül sor. Az ábra tanulságai szerint, [1] az Egész szám adattípusú mezőbe a bővítmény a tört számot egészre csonkolva olvassa be. A dátumot és a szöveget nem importálja. [2] A Tizedes tört szám adattípusú mezőbe csak egész számot tudunk beolvastatni, dátumot és szöveget nem. [3] A Dátum adattípusú mezőbe csak dátum kerülhet. [4] A Szöveg adattípusú mezőben a másik három adattípus szövegként lesz elhelyezve.

# beolvasás vágólapról

# fogalmak

Az importálásos tábla készítés első lépése a kopírozás: a bővítmény az elemzendő adatokról másolatot készít a számítógép ideiglenes tárjába. Ugyanezt a műveletet hajtja végre a program is, amikor kijelölünk egy táblázatot és kiadjuk a *Másolás* parancsot. Tehát nem meglepő, hogy a bővítmény a "vágólapon" álló adatokból is képes táblát készíteni.

Vegyük sorra a PowerPivot vágólap-műveleteit. [1] *Beillesztés új táblázatba*: a művelet egy új táblát hoz létre a vágólapon lévő adatokkal. [2] *Beillesztés hozzáfűzéssel*: a művelet a vágólapon lévő adatokat az aktív táblába helyezi, a már ott lévő rekordok után. [3] *Beillesztés cserével*: a művelet törli az aktív tábla rekordjait, majd az üres táblába helyezi a vágólapon lévő adatokat. [4] *Másolás*: a művelet vágólapra helyezi a kijelölt objektumot.

A PowerPivot ablakban nincs többes kijelölés, értsd: nem szomszédos területeket nem tudunk kijelölni. Az importálással létrehozott tábláknál a beillesztés hozzáfűzéssel és a beillesztés cserével utasítások nem elérhetők.



29. ábra a vágólap-műveletek vezérlői és leírásai

A vágólapos táblakészítés elsősorban különböző sor-számú, de azonos nevű oszlopokat, azonos sorrendben tartalmazó táblázatok, egyszerűen azonos felépítésű táblázatok egyesítésére alkalmazható. Másszóval a forrás-táblázatok adatait egyetlen táblába másoljuk, majd azt adatbázisba ágyazottan vagy önállóan elemezzük. Ebből következően a vágólap műveletekkel létrehozott táblát, általánosítva egyesítő táblának is nevezhetjük. Az egyesítő tábla és forrás-táblázatai tetszőleges munkafüzetben állhatnak. A vágólappal létrehozott tábla nem frissíthető!

#### az egyesítő tábla létrehozása

Az egyesítő tábla létrehozása egyet jelent az első forrás-táblázat beolvasásával. Másoljuk a táblázatot a vágólapra, majd adjuk ki beillesztés parancsot a bővítmény ablakában, amelynek hatására a PowerPivot megjeleníti a beillesztendő táblázat tizenkilenc soros villámnézetét.

A parancstáblán megadhatjuk a tábla nevét és jelölőnégyzettel deklarálhatjuk az első sorban álló oszlop-neveket. A beillesztés villámnézete nem tartalmazza a szűrés eszközeit, tehát a forrás-táblázatok rekordjait, ha szükséges, akkor a vágólapra helyezés előtt kell szelektálnunk.

Azonos adattípusú bejegyzéseket tartalmazó oszlopok esetén a bővítmény: [1] megkülönbözteti az egész számokat- és a tizedes törteket és ennek megfelelően állítja be a mező adattípusát, [2] a pénznem típusú forrás-adatokat négy tizedesjegyre kerekíti, [3] a dátumokat a o:oo:oo időponttal egészíti ki, [4] az időpontok elé a 1899.12.31. dátumot illeszti, és dátum adattípusú mezőt hoz létre számukra.

A vegyes adattípusú forrás-oszlop számára a bővítmény szöveg adattípusú mezőt hoz létre, ha abban akár csak egyetlen szöveg/logikai/dátum adattípusú adat áll. Ha a felsorolt három adattípus hiányzik a vegyes adattípusú oszlopból, akkor a mező adattípusa pénznem lesz, ha akár csak egyetlen adata pénznem. A számokat tartalmazó forrás-oszlop számára a bővítmény tizedes tört adattípusú mezőt hoz létre, ha akár csak egyetlen adata tizedes tört.

A PowerPivot a fenti szabályoknak megfelelően létrehozza a táblát, de ha valamelyik mezőjében az egyik adattípus bejegyzéseinek száma eléri a rekordok számának 95 százalékát, felfelé, egész százalékra kerekítve, akkor a bővítmény felajánlja egy számított mező automatikus létrehozását, amely az eredeti mező homogenizált bejegyzéseit tartalmazza.

| =KEREK.LE( rekordok száma * 95% ; 0 ) <= azonos adattípusú bejegyzések száma  |
|-------------------------------------------------------------------------------|
| =KEREK.FEL( azonos adattípusú bejegyzések száma / rekordok száma ; 2 ) >= 95% |

30. ábra homogenizáló mező felajánlásának egyetlen feltétele két különböző megfogalmazásban

A szolgáltatás nem terjed ki a döntően szöveg- és a többségében pénznem bejegyzéseket tartalmazó mezőkre. Az automatikus homogenizáló oszlop létrehozásának lehetőségére a mezőnév mellett álló jelzés figyelmeztet.

|    | logikai 🌼 🔽 | egész 🛛 🔶 🔽             | tört 🛛 🔶 🔽              | dátum 🔶 🔽              | idő 🛛 🔶 🔽              |
|----|-------------|-------------------------|-------------------------|------------------------|------------------------|
| 9  | false Tov   | ábbi információért katt | intson az oszlop bárme  | lyik cellájára. :00:00 | 1899. 12. 31. 19:13:52 |
| 10 | false       | -38                     | -38.940194594391031     | 2004. 06. 28. 0:00:00  | 1899. 12. 31. 16:09:20 |
| 11 | false       | 97                      | 97.6715220258331        | 2001. 01. 12. 0:00:00  | 1899. 12. 31. 15:21:37 |
| 12 | true        | 72                      | 72.393020295397008      | 2007. 11. 13. 0:00:00  | 1899. 12. 31. 21:43:17 |
| 13 | true        | 🔶 (Ctrl) 🔨              | 37.279309370113467      | 2004. 04. 29. 0:00:00  | 1899. 12. 31. 17:30:28 |
| 14 | true        | Számított oszloj        | hozzáadása és logikai   | adattípusúra konvertál | ása 1. 2:58:20         |
| 15 | true        | Az oszlop megt          | artása szöveges adattíp | usúként                | 1. 7:59:55             |
| 16 | false       | 55                      | 55.069027978014461      | 2002. 02. 13. 0:00:00  | 1899. 12. 31. 9:27:43  |
| 17 | true        | -96                     | -96.494780655974324     | 2003. 12. 08. 0:00:00  | 1899. 12. 31. 20:16:54 |
| 18 | true        | -88                     | -88.856946562051874     | 2009. 01. 24. 0:00:00  | 1899. 12. 31. 15:02:15 |
| 19 | false       | 89                      | 89.319920835200946      | 2008. 04. 19. 0:00:00  | 1899. 12. 31. 16:44:36 |
| 20 | true        | 27                      | -37.0100788300278       | 2000. 04. 08 0:00:00   | 1890 12 31. 0:02.11    |

31. ábra

a mezőnév mellett álló és a mező egy bejegyzésére kattintva megjelenő vezérlő

A homogenizáló mező létrehozását a jelzett mező egy bejegyzésére-, majd a bejegyzés mellett megjelenő, Ctrl feliratra kattintva, a Számított oszlop hozzáadása és logikai/numerikus/dátum adattípusúra konvertálása paranccsal kezdeményezhetjük.

| átalakítandó | a többségben lévő adattípus |                             |                          |                         |                       |  |  |  |
|--------------|-----------------------------|-----------------------------|--------------------------|-------------------------|-----------------------|--|--|--|
| adattípus    | logikai                     | egész                       | tizedestört              | dátum                   | idő                   |  |  |  |
| szöveg       | üres                        | üres                        | üres                     | üres                    | üres                  |  |  |  |
| logikai      |                             | üres                        | üres                     | üres                    | üres                  |  |  |  |
| pénznem      | <>0 IGAZ<br>0 HAMIS         | egészre lefelé<br>kerekítve | azonos<br>az eredetivel  | üres                    | üres                  |  |  |  |
| egész        | <>0 IGAZ<br>0 HAMIS         |                             | azonos<br>az eredetivel  | üres                    | üres                  |  |  |  |
| tizedestört  | <>0 IGAZ<br>0 HAMIS         | egészre lefelé<br>kerekítve |                          | üres                    | üres                  |  |  |  |
| dátum        | üres                        | dátum<br>számértéke         | dátum<br>számértéke      |                         | o:oo:oo<br>időponttal |  |  |  |
| idő          | üres                        | 1                           | 1 + az idő<br>számértéke | 1899.12.31.<br>dátummal |                       |  |  |  |

32. ábra a homogenizáló számított oszlop értékei az egyes adattípusok függvényében

A vegyes adattípusú, döntően idő bejegyzéseket (ó:pp:mm) tartalmazó mező automatikus homogenizáló képlete hibás! A képletet a mező tetszőleges bejegyzésére kattintva, a szerkesztőlécen javíthatjuk: =IF( NOT( ISERROR( TIMEVALUE( [mezőnév] ))) ; TIMEVALUE( [mezőnév] )). A többségében dátum-idő (éééé. hh. nn. ó:pp:mm) bejegyzéseket tartalmazó mező homogenizálására a bővítmény képlete nem alkalmas! A minden dátum-tartalomra használható képlet ez: =IF( NOT( IS-ERROR( DATEVALUE( [mezőnév] ))) ; DATEVALUE( [mezőnév] ) + TIMEVALUE( [mezőnév] )).

A pénznem és tizedes tört adattípusú bejegyzéseket az INT függvény, a számegyenesen balra elmozdulva, egészre alakítja át. Például a tizenkettő egész három (12,3) tizenkettő (12), a mínusz tizenkettő egész három (-12,3) mínusz tizenhárom (-13) lesz.

A homogenizáló számított mező adattípusát a bővítmény a Kezdőlap, Formátum, Adattípus: felirat után jeleníti meg "Automatikus (adattípus neve)" formában.

### a táblázat előkészítése

Az oszlopok homogenizálását a táblakészítés előtt is elvégezhetjük. Az egyik megoldás lehet, egy segédoszlop alkalmazása, amelyben a kívánt adattípustól eltérő cellatartalmakat képlettel töröljük. A művelethez az Excel típusellenőrző függvényeit használhatjuk. A szöveg-, a logikai-, a pénznem-, az egész-, és a tizedes tört adattípusok detektálása ezekkel a függvényekkel nem okoz problémát, de a dátumok és az időpontok azonosítására alkalmas CELLA függvény, magyar felhasználói környezetben, erre a feladatra, csak erősen korlátozott mértékben alkalmas.

| szöveg       | =HA( SZÖVEG.E( A2 ) ; A2 ; "" )                                                                                                                                                     |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| logikai      | =HA( LOGIKAI( B2 ); B2 ; "" )                                                                                                                                                       |
| pénznem      | =HA( HAHIBA( NEM( SZÖVEG.KERES( "c" ; CELLA( "forma" ; A2 )) > 0 ) ; IGAZ ) ; "" ; A2 )                                                                                             |
| egész szám   | =HA( VAGY( SZÖVEG.E( A2 ) ; LOGIKAI( A2 ) ; ÜRES( A2 ) ; HAHIBA( MARADÉK( A2 ; 1 ) <> 0 ; HAMIS )) ; "" ; A2 )                                                                      |
| tizedes tört | =HA( VAGY( SZÖVEG.E( A2 ) ; LOGIKAI( A2 ) ; ÜRES( A2 ) ; HAHIBA( SZÖVEG.KERES( "c" ;<br>CELLA( "forma" ; A2 )) > 0 ; HAMIS ) ; HAHIBA( MARADÉK( A2 ; 1 ) = 0 ; HAMIS )) ; "" ; A2 ) |

33. ábra a kívánt adattípustól eltérő cellatartalmak törlése képlettel

A képletek nem tökéletesek, mert a fent ismertetett probléma miatt, [1] az egész számok között a dátumok, [2] a tizedes törtek között az időpontok is megjelennek.

### rekordok hozzáadása az egyesítő táblához

A Kezdőlap, Vágólap, Beillesztés hozzáfűzéssel utasítással újabb rekordokat másolhatunk az elkészült táblába. Amennyiben a vágólapon álló táblázat oszlopainak száma azonos a kibővítendő tábla mezőszámával, akkor a bővítmény megjeleníti a Beillesztés villámnézete parancstáblát. A panel tartalmazza a bővítendő tábla első húsz rekordját (felül) és a hozzáfűzni szándékolt táblázat első tizenkilenc sorát (alul). A vágólapon lévő adatok első sorában álló mezőneveket a két listát követő jelölőnégyzettel deklarálhatjuk. A tábla rekordjait megjelenítő területrész magasságát a terület alsó szegélye alatti, láthatatlan vezérlővel szabályozhatjuk. Az eszközt csak az átalakuló egér-mutató jelzi.

Az új tábla létrehozásakor és az újabb rekordok hozzáadásakor megjelenített parancstáblák különbözőek, de feliratuk azonos: *Beillesztés villámnézete*. Megnyitáskor a panel alján megjelenített üzenettől, "Típuseltérés. A(z) <oszlopnév> oszlopba illesztendő adatok típusa nem helyes (<oszlop adattípusa>) legalább egy sor esetében.", nem kell megijedni mert az esetek többségében, a még nem deklarált oszlop-nevek generálják!



34. ábra a "beillesztés hozzáfűzéssel" panel a láthatatlan vezérlővel és a még nem deklarált oszlop-nevek okozta adattípus-hibával

A bővítmény csak a beillesztendő oszlopok számát és adataik típusát ellenőrzi. Mást nem. Az oszlopnevek deklarálását nem követi az oszlopok és a mezők sorrendjének összevetése! Tehát az azonos adattípusú oszlopok véletlen felcserélése hamis adatok tömegét eredményezheti a táblában!

A beillesztés hozzáfűzéssel utasításra a bővítmény a befogadó mező típusától eltérő adatokat a mező adattípusára konvertálja. Ha ez nem lehetséges, akkor erről a panel alján "Típuseltérés" kezdetű és a cél-mező nevét is tartalmazó szöveggel figyelmeztet. Több hiba esetén, jobbról balra haladva, az első megsértett adattípusú cél-mező nevét olvashatjuk az üzenetben. Az adattípus-hiba meghiúsítja az adatok beillesztését. Ha a hibát csak, a még nem deklarált, egyik oszlop-név okozza, akkor a jelölőnégyzetére kattintva az üzenet eltűnik.

| a beillesztendő | a tábla mezőinek adattípusa                       |          |                  |                                  |                                           |                          |                    |
|-----------------|---------------------------------------------------|----------|------------------|----------------------------------|-------------------------------------------|--------------------------|--------------------|
| adat típusa     | szöveg                                            | I        | ogikai           | pénznem                          | egész                                     | tizedes                  | dátum              |
| szöveg          |                                                   | AD       | ATTÍPUS-<br>HIBA | ADATTÍPUS-<br>HIBA               | ADATTÍPUS-<br>HIBA                        | ADATTÍPUS-<br>HIBA       | ADATTÍPUS-<br>HIBA |
| logikai         | szövegként                                        |          |                  | ADATTÍPUS-<br>HIBA               | ADATTÍPUS-<br>HIBA                        | ADATTÍPUS-<br>HIBA       | ADATTÍPUS-<br>HIBA |
| pénznem         | szövegként pénznem<br>jelölő nélkül               | <>0<br>0 | igaz<br>Hamis    |                                  | e. kerekítve,<br>pénznem jelölő<br>nélkül | pénznem jelölő<br>nélkül | ADATTÍPUS-<br>HIBA |
| egész           | szövegként                                        | <>0<br>0 | IGAZ<br>HAMIS    | pénznem jelölővel<br>kiegészítve |                                           |                          | ADATTÍPUS-<br>HIBA |
| tizedes         | szövegként                                        | <>0<br>0 | igaz<br>Hamis    | pénznem jelölővel<br>kiegészítve | egészre<br>kerekítve                      |                          | ADATTÍPUS-<br>HIBA |
| dátum           | szövegként<br>o:oo:oo időponttal<br>kiegészítve   | AD       | ATTÍPUS-<br>HIBA | ADATTÍPUS-<br>HIBA               | ADATTÍPUS-<br>HIBA                        | ADATTÍPUS-<br>HIBA       |                    |
| idő             | szövegként<br>1899.12.31. dátummal<br>kiegészítve | AD       | ATTÍPUS-<br>HIBA | ADATTÍPUS-<br>HIBA               | ADATTÍPUS-<br>HIBA                        | ADATTÍPUS-<br>HIBA       |                    |

35. ábra

beillesztés hozzáfűzéssel műveletet megelőző konvertálás, adattípusok szerint, az üres cella az eredeti adat beillesztését jelenti

Az adattípus-hiba miatt meghiúsult műveletre, a villámnézet bezárása után megjelenő "Nem sikerült beilleszteni az adatokat" szövegű üzenet figyelmeztet. A balsikerű próbálkozás nem törli a vágólapot, az adatok továbbra is a rendelkezésünkre állnak.

# további vágólap-műveletek

A Kezdőlap, Vágólap, Beillesztés cserével parancs törli az aktív tábla rekordjait és az üres táblába helyezi a vágólapon lévő sorokat. A művelet végrehajtása előtt a PowerPivot a beillesztés hozzáfűzéssel műveletnél már bemutatott parancstáblát jeleníti meg, eltérő szöveggel, de azonos képi elemekkel.

Az importálásos- és a vágólapos tábla-készítő módszer vegyíthető. Tehát egy adott PowerPivot munkafüzetben állhatnak importálással és vágólap-műveletekkel létrehozott táblák is.

Az adatok további feldolgozásához használhatjuk a *Kezdőlap, Vágólap, Másolás* parancsot is, amellyel vágólapra helyezhetjük a teljes táblát, illetve kijelölt rekordjait. Rekordok másolásánál a mezőnevek automatikusan a vágólapra kerülnek, de csak a bővítmény ablakában használhatjuk őket, az Excel ablakban csak a rekordok lesznek beillesztve. A másolás utasítás a kijelölt rekordok menüjéből is elérhető.

# tábla adatbázis-táblázatból

# fogalmak

Az adatbázis-táblázat egy az Excelben, a Beszúrás, Táblázatok, Táblázat- vagy a Kezdőlap, Stílusok, Formázás táblázatként utasítással vagy Ctrl+R billentyű-paranccsal létrehozott funkcionális egység, az adatbázis-jellegű műveletek egyszerű végrehajtására.

Az Excel adatbázis-táblázat létrehozásakor automatikusan, univerzális, tehát a teljes munkafüzetben használható nevet kap: Táblázat<sorszám>. Az automatikus név, hasonlóan a felhasználói nevekhez, felkerül a szerkesztőléc név mezőjének-, valamint a névkezelő-parancstábla listájára. Utóbbit a *Képletek, Definiált nevek, Névkezelő* utasítással jeleníthetjük meg.

Az automatikusan létrehozott nevet a Névkezelő parancstáblán, valamint aktív adatbázis-táblázat mellett a Táblázateszközök, Tervezés, Tulajdonságok csoportjában módosíthatjuk.



36. ábra az adatbázis-táblázat nevének módosítási lehetőségei

A névnek a következő előírásoknak kell megfelelnie. [1] Maximális hossza 255 karakter, [2] tartalmazhat kis- és nagybetűket valamint számokat, [3] nem tartalmazhat szóközt és a program foglalt karaktereit, [4] tagolása az \_ (alsó vonal) és a . (pont) karakterekkel történik, [5] nem kezdődhet számmal, [6] nem lehet azonos egyetlen lehetséges hivatkozással, [7] önállóan nem lehet név a kis és nagy cé (c, C) és az er (r, R) betűk, [8] a csak kis- és nagybetűkben különböző neveket a program azonosnak tekinti.

A szövegében a közönséges táblázat elnevezést használom azokra a táblázatokra, amelyeket nem alakítottunk át adatbázis-táblázattá.

# a tábla létrehozása

Kattintsunk az adatbázis-táblázatba, majd adjuk ki PowerPivot, Táblázatok, Hozzáadás az adatmodellhez utasítást. A parancs kiadása után a bővítmény megjeleníti a létrehozott táblát, amelynek neve megegyezik az adatbázis-táblázat nevével.

Amennyiben egy közönséges táblázatból adjuk ki a fenti utasítást, akkor először deklarálnunk kell a táblázat területét és oszlop-neveinek meglétét a megjelenített *Táblázat létrehozása* parancs-táblán és ezt követi az adatbázis-táblázat és a tábla létrehozása.

A bővítmény homogén adattípusú oszlopok esetén a vágólapos táblakészítésnél alkalmazott szabályokkal megegyezően állítja be a mezők adattípusát, kivéve a pénzeket, amelyek számára Tizedes tört szám adattípusú mezőt hoz létre. A vegyes adattípusú oszlopok szöveg adattípusú mezőket eredményeznek.

# tábla a kimutatás forrásából

## létrehozás

Mikor egy közönséges táblázatot szeretnénk kimutatással vizsgálni és kiadjuk a Beszúrás, Táblázatok, Kimutatás utasítást, a megjelenített Kimutatás létrehozása parancstábla bal alsó sarkában egy Adat felvétele az adatmodellbe feliratú vezérlőt találunk. A jelölőnégyzetet kiválasztva a bővítmény Tartomány néven táblát készít az aktuális táblázatból és ezt követően PowerPivot-kimutatást hoz létre az új tábla elemzésére.

| Kimutatás létrehozása                                                                   |             | ?                                    | $\times$                                          |                   |
|-----------------------------------------------------------------------------------------|-------------|--------------------------------------|---------------------------------------------------|-------------------|
| Válassza ki az elemezni kívánt adatokat<br>Táblázat vagy tartomány kijelölé <u>s</u> e  |             |                                      |                                                   |                   |
| Táblázat vagy tartomány: Munka 1!\$A                                                    | \$1:\$D\$11 |                                      | Ť                                                 |                   |
| ○ K <u>ü</u> lső adatforrás használata                                                  |             |                                      |                                                   |                   |
| Kapcsolat választása                                                                    |             |                                      |                                                   |                   |
| Kapcsolat neve:<br>A munkafüzet adatmodelljének használata                              |             |                                      |                                                   |                   |
| Adja meg a kimutatás helyét                                                             |             |                                      |                                                   |                   |
|                                                                                         |             | Kimut                                | atásr                                             | mezők 🔹 🗙         |
| Hel <u>v</u> :                                                                          |             | Aktívak                              | Mind                                              |                   |
| Válassza ki, hogy több táblázatot szeretne<br>☑ Adat felvétele az adat <u>m</u> odellbe | mezni<br>OK | Válassza ki<br>kívánt mez<br>Keresés | a jelent<br>zőket:                                | ésbe felvenni 😰 🔻 |
|                                                                                         |             | ▲ III Tart                           | tomány<br>név<br>szem. sz<br>szül. dát<br>fizetés | ám<br>um          |

37. ábra "tábla-készítő" vezérlő és a létrehozott tábla a kimutatás segédablakában

Az Adat felvétele az adatmodellbe vezérlővel létrehozott tábla, más megfogalmazásban, egy segédtábla, amely biztosítja a korlátlan hozzáférést a PowerPivot szolgáltatásaihoz, beleértve a DAX nyelv használatát is. Ezt a magyarázatot erősíti az a tény is, hogy a kimutatás törlése a segéd-tábla automatikus törlését eredményezi. A kimutatással párhuzamosan létrehozott tábla kezelése mindenben azonos a más módon létrehozott táblákkal. Például összekapcsolhatjuk az adatbázis más táblájával.

# táblák

#### az adatnézet felépítése

A táblákat a PowerPivot ablakban Adatnézetben látjuk. Ebben a nézetben tudjuk elvégezni a tábla-, a mező- és a rekordműveletek többségét. A másik megjelenítési mód a Diagramnézet, amely elsősorban a táblák közötti kapcsolatok megjelenítésére illetve kialakítására szolgál. Mivel a Diagramnézet semmilyen diagramot nem tartalmaz, ezért én ezt a megjelenítést a továbbiakban kapcsolatnézetnek fogam nevezni. A nézetek kapcsolói megtalálhatók a szalagon a Kezdőlap, Nézet csoportban, illetve az állapotsor jobb alsó sarkában. Utóbbiak feliratai: Rács, ez az adatnézet és Diagram, ez a kapcsolatnézet megjelenítője. Ebben a fejezetben az adatnézet felépítését és funkcióit ismertetem.

A nézet elemei felülről lefelé és balról jobbra haladva a következők. A szalag alatt a szerkesztő sor húzódik, a mezőlistával, a képletszerkesztő blokkal és a szerkesztő mezővel. Ezt követi a tábla kijelölésére szolgáló vezérlő, valamint a mezőneveket tartalmazó sor. Az utolsó mező után egy üres oszlop áll, *Oszlop hozzáadása* felirattal. Ez az oszlop a számított mező egyszerű létrehozását teszi lehetővé. A rekordok előtt, az ablak bal szélén futó keskeny, sorszámokat tartalmazó függőleges sáv a rekordok kijelölésére szolgál. A panel alsó harmadát a számítási terület foglalja el. Itt jeleníti meg a bővítmény a táblában tárolt összesítéseket. A két területet elválasztó borda egérrel mozgatható. A számítási terület a *Kezdőlap, Nézet, Számítási terület* paranccsal vagy az elválasztó bordán, dupla kattintással rejthető el. A görgetősávokat a bővítmény csak akkor jeleníti meg, ha a képernyőn kívül mezők illetve rekordok állnak.

|   |                 | •                  |                        |                    |                 |                   | ×    |
|---|-----------------|--------------------|------------------------|--------------------|-----------------|-------------------|------|
| 1 | város 🔽         | l negyedév 🔽       | II negyedév 🔽          | III negyedév 🔽     | IV negyedév 🔽   | Oszlop hozzáadása | ^    |
| 1 | Bácsalmás       | 71                 | 54                     | 72                 | 81              |                   |      |
| 2 | Balassagyarmat  | 98                 | -68                    | -69                | 34              |                   |      |
| 3 | Balatonalmádi   | -50                | 63                     | 65                 | -20             |                   |      |
| 4 | Balatonboglár   | -62                | -98                    | -84                | -76             |                   |      |
| 5 | Balatonföldvár  | 75                 | 79                     | 62                 | -47             |                   |      |
| 6 | Balatonfüred    | 33                 | 33                     | 29                 | 53              |                   |      |
| 7 | Balatonfűzfő    | -34                | -23                    | -83                | -65             |                   |      |
| 8 | Balatonlelle    | 11                 | 50                     | -14                | 10              |                   |      |
| 9 | Balmazújváros   | 62                 | -91                    | 83                 | -71             |                   | ~    |
|   |                 |                    |                        |                    |                 |                   | ^    |
|   |                 |                    |                        |                    |                 |                   |      |
|   |                 |                    |                        |                    |                 |                   |      |
|   |                 |                    |                        |                    |                 |                   | ~    |
| < |                 |                    |                        |                    |                 |                   | >    |
| 2 | 2005 összesen 2 | 006 összesen 20    | 007 összesen 🛛 200     | 08 összesen   2009 | összesen 2011 ö | sszesen 🛄 🚽       |      |
| R | lekord: 🕶 🔹 1.  | ., összesen 14 🔹 🔸 | <ul> <li>▶1</li> </ul> |                    |                 | <b>H</b>          | Ч.,: |

38. ábra az adatnézet elemei

A vízszintes görgetősávot a füleket tartalmazó sor követi. A jobb szélén álló vezérlő, három pont és egy piciny háromszög, a nem látható táblák listáját jeleníti meg. A fülek alatt az állapotsor húzódik a rekord navigáció eszközeivel és a már említett nézetváltó parancsgombokkal.

Az adatnézetben a mezőnevek folyamatosan láthatók, a tábla függőleges görgetése csak a rekordokat mozgatja. Nagyítás funkcióval ez a nézet nem rendelkezik.

## tábla-műveletek

Az importálással létrehozott táblák bővítésére vagy utólagos szelektálására szolgál a Tervezés, Táblázat tulajdonságai utasítással megjeleníthető a Táblázat tulajdonságai szerkesztése panel. A parancstáblán elérhető szolgáltatások közül csak egy kíván magyarázatot: Az oszlopnevek eredete felirat után álló Forrás vezérlő a táblázat oszlopneveit-, a Modell vezérlő a mezőneveket jeleníti meg. Természetesen, ha nem neveztük át a mezőket, akkor a nevek azonosak.

| Táblázat tulajdonságain                      | k szerkesztése                                                                                                   |                                 |  |  |  |  |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------|--|--|--|--|
| Táblázattulajdonságai<br>Ezen a lapon módosi | blázat tulajdonságainak szerkesztése<br>Ezen a lapon módosíthatók a táblázat-, oszlop- és sorszűrők leképezései. |                                 |  |  |  |  |
| Tá <u>b</u> lázat neve:                      | 2001 összesen                                                                                                    |                                 |  |  |  |  |
| Kap <u>c</u> solat neve:                     | Excel 09 eladások                                                                                                |                                 |  |  |  |  |
| F <u>o</u> rrás neve:                        | '2001 összesen\$'                                                                                                | Villám <u>n</u> ézet frissítése |  |  |  |  |
| Oszlopnevek eredete:                         | ● <u>F</u> orrás ○ <u>M</u> odell                                                                                |                                 |  |  |  |  |
| 🔽 🗹 város 💽                                  | 🗹 i negyedév 🛛 🔽 🛛 il neg                                                                                        | yedév 🛛 🔽 III negyed            |  |  |  |  |
| 1 Bácsalmás                                  | -17                                                                                                              | -24                             |  |  |  |  |
| 2 Balassagyarmat                             | 61                                                                                                               | 92                              |  |  |  |  |
| 3 Balatonalmádi                              | -72                                                                                                              | -51                             |  |  |  |  |



Munkafüzetből illetve szövegfájlból importált adatok tábláinál a Váltás a következőre utasítás inaktív. A témakörünkben nem szereplő, lekérdezéssel létrehozott táblák esetén, ezzel a parancscsal válthatunk a tábla villámnézete és az őt létrehozó lekérdezés tervező nézete között.

A további tábla-műveleteket a tábla fülének menüjében találjuk. [1] Törlés: a tábla törlése, billentyűparancsa Ctrl+d. [2] Átnevezés: tábla átnevezése, billentyűparancsa Ctrl+r, egérrel dupla kattintás a fülön. [3] Áthelyezés: A Táblázat áthelyezése panel megjelenítése, billentyűparancsa Ctrl+m, egérrel a fül húzása. [4] Leírás...: adatnézetben a tábla fülére mutatva megjelenő rövid szöveg, billentyűparancsa Ctrl+e. A szöveg szerkesztése közben új sort a Ctrl+Enter billentyűparanccsal kérhetünk. [5] Elrejtés/Megjelenítés az ügyféleszközök elől: a tábla megjelenítésének tiltása a PowerPivot-mezőlistán/a tiltás feloldása. [6] Számítási terület megjelenítése: az az összesítések megjelenítésére szolgáló terület elrejtés/megjelenítése.

Az Elrejtés az ügyféleszközök elöl utasítás a szokásos beállítások mellett csak a PowerPivot-kimutatás segédablakából tünteti el a táblát, de a bővítmény ablakából nem. Ott csak a tábla fülecskéjének szürke színe jelzi a "rejtettséget". A tábla csak a Kezdőlap, Nézet, Rejtett elemek megjelenítése utasítás kiadása után tűnik el az ablakból.

### rekord-navigáció

A táblában történő navigálás eszközei jórészt azonosak a munkalapon megszokottakkal. Vegyük számba az eltéréseket. [1] A függőleges görgetősáv csúszkáját húzva, a bővítmény az egérmutató bal oldalán megjeleníti a legelső látható rekord sorszámát és a tábla összes rekordjának számát. [2] Az állapotsor bal oldalán, a navigáló parancsgombok között az aktív rekord sorszámát látjuk a teljes rekordszám társaságában. Ez a vezérlő nem csak kijelző, hanem beviteli mező is: az "öszszesen" szóra kattintva begépelhetjük a megjelenítendő rekord sorszámát. Az *Enter* billentyűvel zárjuk le a bevitelt, amely egyben az utasítás kiadását is jelenti. [3] Az aktív rekord meghatározott mezőjére helyezhetjük a kurzort a szerkesztőléc elején álló, illetve az F5 billentyűvel megjeleníthető mező-listák segítségével. Az előbbi ABC sorrendben, utóbbi a táblában elfoglalt helyzetükkel azonos sorrendben tartalmazza a mezőket.

### kijelölés

A tábla bal felső sarkában, a mezőnevek előtt álló kis négyszöggel, illetve a Ctrl+a billentyűparanccsal a teljes tábla kijelölhető, a mezőneveket is beleértve.

Adott mezőt a nevére kattintva, vagy a *Ctrl+szóköz* gyorsbillentyűvel jelölhetjük ki. A rekordok kijelölése a tábla bal szélén húzódó sáv elemeivel, vagy a *Shift+szóköz* billentyűparanccsal történhet. Az Excelben megszokott kijelölő billentyűparancsok a bővítmény ablakában is használhatók.

Többes kijelölés, azaz nem szomszédos elemek kijelölése, a táblában nem lehetséges.

#### mezők kezelése

A mezők sorrendjét a kijelölés után a mezőnevek húzásával módosíthatjuk. A mezőnevek menüjének Oszlopok rögzítése és a Tervezés, Oszlopok, Rögzítés, Rögzítés parancs a kijelölt mezőt a tábla jobb oldalára helyezi, a már ott lévő rögzített mezők után. A rögzített mezők a tábla vízszintes görgetésekor mozdulatlanok maradnak.

|                | $\sim$             |                       |       |         |           | $\sim$         |                |
|----------------|--------------------|-----------------------|-------|---------|-----------|----------------|----------------|
| 🖌 típus        | 🕅 rendszám 💌       | szervizhe 🔽           | szerv | izből   |           | számla         | 🔽 sajáthibás 📘 |
| 1 Seat Leon    | Kapcsolat létrehoz | tása                  |       | 10. 08. | 0:00:00   | 295 500 H      | IUF IGAZ       |
| 2 VW Golf      | Ugrás a kapcsoló   | dó táblához           |       | 10. 15. | 0:00:00   | 274 600 H      | IUF IGAZ       |
| 3 Chevrolet (  | Másolás            |                       |       | 11. 05. | 0:00:00   | 255 800 H      | IUF HAMIS      |
| 4 Opel Astra   | 🖞 Oszlop beszúrása |                       |       | 11. 07. | 0:00:00   | 672 300 H      | IUF IGAZ       |
| 5 Opel Corsa 📑 | Oszlopok törlése   |                       |       | 11. 05. | 0:00:00   | 487 400 H      | IUF HAMIS      |
| 6 Opel Corsa   | Oszlop átnevezés   | e                     |       | 11. 05. | 0:00:00   | 256 100 H      | IUF HAMIS      |
| 7 Chevrolet A  | Oszlopok rögzítés  | e                     |       | 10. 30. | 0:00:00   | 296 600 H      | IUF HAMIS      |
| 8 Chevrolet (  | Minden oszlop rög  | zítésének feloldása   |       | 11. 12. | 0:00:00   | 257 500 H      | IUF IGAZ       |
| 9 Opel Vectra  | Electés az ügyféle | ezközök elől          |       | 11. 21. | 0:00:00   | 249 600 H      | IUF HAMIS      |
| 10 Opel Antar  |                    | SZROZOR EIDI          |       | 10. 31. | 0:00:00   | 255 500 H      | IUF HAMIS      |
| 11 Opel Vectra | Oszlopszélesség    |                       |       | 11. 07. | 0:00:00   | 267 100 H      | UF HAMIS       |
| 12 Opel Vectra | Szűrő              |                       | •     | ×       | Szűrő tör | lése a követke | zőből: típus   |
| 13 Chevrolet A | Leírás             | ~                     |       | 11. 19. | 0:00:00   | 295 300 H      | IUF IGAZ       |
| 14 Opel Vectra | ZPQ-733            | 2007. 11. 12. 0:00:00 | 2007. | 11. 21. | 0:00:00   | 273 000 H      | IUF IGAZ       |
| 15 Opel Vectra | YSO-468            | 2007 11. 19. 0:00:00  | 2007. | 12, 10  | 0:00:00   | 288 500 H      | IUF IGAZ       |

40. ábra a mezőnév menüje

A mezőnév menüjének Elrejtés az ügyféleszközök elől utasításával letilthatjuk a mező megjelenítését a PowerPivot-kimutatás mezőlistáján. A letiltott mezőt a bővítmény szürkére színezi, de kezelhetőségét adatnézetben nem korlátozza. A PowerPivot-mezőlista frissítés után, ismét mutatja a mezőt, ha a blokkolást feloldjuk a mezőnév menüjének Megjelenítés az ügyféleszközök számára parancsával. A szokásos beállítások mellett a "rejtett" mező látható marad a bővítmény ablakában, de a Kezdőlap, Nézet, Rejtett elemek megjelenítése utasítással a táblából is eltüntethető.

A mezők szélességének megadása történhet: [1] hozzávetőlegesen, a mezőnév jobb oldali szegélyének húzásával, [2] a megjelenített legszélesebb mezőbejegyzéshez igazítva, a mezőt kijelölve, a mezőnév jobb oldali szegélyen duplát kattintva, vagy [3] pontosan, a mezőnév menüjének *Oszlopszélesség…*, illetve a *Tervezés, Oszlopok, Szélesség* paranccsal, képpontban megadva. Utóbbi mértékegység nem megszokott az Excelben. Hogyan használjuk? Nézzük meg a vezérlőpultban monitorunk felbontását! Például 1152\*864. Az első szám a vízszintesen megjelenített képpontok számát jelenti. Ehhez a számhoz arányíthatjuk, mondjuk a 150 képpontot, amely körülbelül nyolcada a teljes szélesség. Mindhárom méretező-művelet több mező kijelölésével is működik. Az összes mező szélességének dupla kattintásos megadása, a tábla kijelölése után, tetszőleges mezőnév elválasztó vonalán elérhető. A bővítmény a dupla-kattintásos szélesség-beállításkor csak a megjelenített bejegyzések hosszát vizsgálja.

|   | [javítá Z] | •               | 1         |                 |         |      |           |             |
|---|------------|-----------------|-----------|-----------------|---------|------|-----------|-------------|
| 4 |            | munkat 💌        | születé 🚱 | anvia neve      |         | ó 💌  | város 💽   | utca, sz 💌  |
| 1 |            | 1 Karikás Haj   | 32303     | (Az összes kije | lölése) | 1041 | Budapest, | Mády Lajos  |
| 2 | 2          | 2 Cseke Piros   | 32420     | Kovács Linda    |         | 1157 | Budapest, | Árendás kö  |
| 3 | 3          | 3 Szolnoki G    | 22191     | Megyesi Ba      |         | 1016 | Budapest, | Gellérthegy |
| 4 | 4          | 4 Olajos Emma   | 25097     | Ujvári Emma     |         | 1222 | Budapest, | Bálvány utc |
| 5 | 5          | 5 Kardos Nán    | 23982     | Puskás Giz      |         | 1097 | Budapest, | Vaskapu ut  |
| 6 | 6          | 6 Pandúr Péter  | 22107     | Kövér Gertr     |         | 1013 | Budapest, | Feszty Árpá |
| 7 |            | 7 Alföldi Anikó | 32558     | Sajó Kinga      | _       | 1138 | Budanest, | Csaverevár  |

41. ábra

összes mező szélességének dupla kattintásos megadása, a megjelenített bejegyzések alapján

Amint láttuk a *Elrejtés az ügyféleszközök elöl* művelet funkciója a mező adatainak kivonása a pivot-táblás elemzésből. A bővítmény ablakában nincs lehetőségünk a mezők, az Excelben megszokott, rejtésére, de a mezőszélesség nullára állításával helyettesíthetjük a hiányzó műveletet. A kijelölhetőség megtartása érdekében a nulla szélességű mezőket a bővítmény öt képpont szélességűre állítja be.

|   | [sajáthibás] | ▼ IGAZ             |               |               |                   |
|---|--------------|--------------------|---------------|---------------|-------------------|
|   | javítás AZ 🔽 | munkatárs neve  🔽  |               | osztály 💽     | típus             |
| 1 | 1            | Karikás Hajnalka   | 06093173      | IT            | Seat Leon         |
| 2 | 2            | Cseke Piroska      | . 28810049380 | beruházási    | VW Golf           |
| 3 | 3            | Szolnoki Gabriella | 26010027243   | beruházási    | Chevrolet Captiva |
| 4 | 4            | Olajos Emma        | 26809162865   | IT            | Opel Astra        |
| 5 | 5            | Kardos Nándor      | 16508289266   | jogi          | Opel Corsa        |
| 6 | 6            | Pandúr Péter       | 16007106308   | kommunikációs | Opel Corsa        |
| 7 | 7            | Alföldi Anikó      | 28002191763   | kommunikációs | Chevrolet Aveo    |

42. ábra "nulla" szélességűre állított mezők

A mezőnév menüjének *Leírás…* parancsával a mező tartalmáról adhatunk információt a munkafüzettel dolgozóknak. A kijelölt mező nevének módosítása illetve a mező törlése a mezőnév menüjének parancsaival történhet. Az aktív mezőt a *Delete* billentyűvel is törölhetjük.

### rekordok automatikus rendezése

A bővítmény az importálással létrehozott táblák rekordjait rendezetten jeleníti meg. Az automatikus rendezés algoritmusa a következő. [1] A bővítmény megszámlálja a mezők egyedi bejegyzéseinek előfordulásait. [2] Az a mező lesz a rekordok rendező mezője, amelynek valamelyik bejegyzése legalább hatvannégyszer előfordul, a mezőket balról jobbra vizsgálva. [3] Ha több mezőnek is van ilyen bejegyzése, akkor a legmagasabb előfordulás-számú bejegyzés mezője lesz a rendezés alapja. [4] Ha a legmagasabb előfordulás-szám egy vagy több mezőben azonos, akkor az a mező lesz a rendezés alapja, amelynek második legnagyobb előfordulás-száma a legnagyobb. [5] Két egyedi bejegyzést tartalmazó mezőt, például logikai adattípusú mezőt, csak akkor választ rendező mezőnek a bővítmény, ha a tábla több egyedi bejegyzésű mezői nem teljesítik a fenti feltételeket. [6] A rekordok sorrendjét a rendező mező bejegyzéseinek előfordulás-száma határozza meg. Tehát a legtöbbször előforduló bejegyzést tartalmazó rekordok lesznek a táblázat tetején, majd a második leggyakrabban előforduló bejegyzést tartalmazók következnek. És így tovább. [7] A határértéket el nem ért bejegyzéseket tartalmazó rekordokat a bővítmény a táblázat alján rendezetlenül jeleníti meg.

#### rekordok felhasználói rendezése

A rekordok csak egyetlen mező bejegyzései alapján rendezhetők. A növekvő és a csökkenő rendezés parancsait a *Kezdőlap, Rendezés és szűrés csoport* valamint a mezők szűrőlistái tartalmazzák. A műveletet előtt a rendezés alapjának szánt mezőt, egy bejegyzésére kattintva ki kell választanunk.

A rekordok eredeti sorrendjét a Kezdőlap, Rendezés és szűrés csoport Rendezés kikapcsolása vagy a rendező mező szűrőlistájának Rendezés törlése a következőből: <mezőnév> paranccsal állíthatjuk vissza.

#### a mező adattípusa és számformátuma

A mező adattípusának megállapítása, mint láttuk, automatikus. Felhasználói módosítása a Kezdőlap, Formátum, Adattípus listájával történhet. A felajánlott konvertálási lehetőségek végrehajthatóságát az adott mező bejegyzései határozzák meg.

Az adatok megjelenítését, az Excelben használatos kifejezéssel számformátumát, a *Kezdőlap, Formátum, Formátum* legördülő menüből választhatjuk ki. A bővítményben egyéni formátumkódot közvetlenül nem definiálhatunk, csak számított mező segítségével. A dátum adattípusú mező számformátum-listájában szereplő, csillaggal jelzett elemek a vezérlőpult szerinti formátumok. A dátum-lista utolsó elemével, *További dátumformátumok…* a teljes formátum-listát és a kiválasztott formátum kódját kapjuk.

A numerikus adattípusú, de nem dátum adattípusú mezőkhöz választható megjelenítések a következők. [1] *Általános*: ezres elválasztó nélkül, az összes tizedesjeggyel. Pénznem adattípusú mezőben ezres elválasztóval, két tizedesjeggyel. [2] *Tizedes tört szám*: ezres elválasztó nélkül, két tizedesjeggyel. Pénznem adattípusú mezőben ezres elválasztóval. [3] *Egész*: Ezres elválasztó és tizedesjegyek nélkül. [4] *Pénznem*: Ezres elválasztóval, két tizedesjeggyel és forint jelölővel. [5] *Százalék*: A bejegyzés százszorosának megjelenítése, ezres elválasztó nélkül, két tizedesjeggyel, százalék jelölővel. [6] *Tudományos*: Megjelenítés a számok normál alakjában, a mantissza két tizedesjeggyel, a karakterisztika három számjeggyel megjelenítve.

A bejegyzések megjelenítését a szalag *Kezdőlap, Formátum* csoportjának parancsgombjaival is szabályozhatjuk. A funkciók, sorrendben: [1] pénznem formátum, listából választható pénznem jelölővel, [2]százalékos formátum, [3] a szám egészrészének megjelenítése ezres csoportosításban, [4] tizedesjegyek számának növelése és [5] csökkentése.



43. ábra a megjelenítés parancsgombjai a szalagon

### műveletek visszavonása ismétlése

Az adatnézetben elvégzett műveletek a *Tervezés, Szerkesztés, Visszavonás/Mégis* parancsokkal vonhatók vissza illetve a visszavont műveletek újra végrehajthatók. A parancsgombok folyamatosan frissülő listáit a visszavonhatatlan műveletek törlik. Melyek ezek a műveletek? A *Táblázat tulajdonságainak szerkesztése* parancstáblán végrehajtott műveletek, mező törlése, tábla frissítés és a tábla törlése. Nem feljegyzett műveletek: mező vagy tábla leírásának módosítása, táblák sorrendjének módosítása.

### tábla frissítése

Az esetleges adatvesztések elkerülése érdekében a tábla aktualizálása három lépésben történik. [1] A forrás-adatokat beolvassa az operatív tárba. [2] A beolvasott adatok homogenizálása. [2] Sikeres konvertálás esetén, a rekordok felülírása.

Az importálással létrehozott táblákat a Kezdőlap, Frissítés listájának parancsaival aktualizálhatjuk. A Frissítés utasítás az aktív táblát, az Összes frissítése utasítás a munkafüzet minden tábláját aktualizálja. A művelet végrehajtásának pillanatnyi állapotát, az automatikusan megjelenített, Adatfrissítés parancstáblán látjuk.

A táblák csoportos frissítésekor bármely tábla aktualizálási hibája az összes tábla frissítését meghiúsítja. Ez látható a következő képen: mind a tizennyolc táblánál a bővítmény hibát jelez, holott csak a 2003-as tábla aktualizálása nem lehetséges. A *Hiba részletes adatai* link egy semmitmondó szöveget jelenít meg.

| Adat                                                                                                   | Adatfrissítés ? X |         |                              |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------|-------------------|---------|------------------------------|--|--|--|--|--|
| Adatfrissítés előrehaladása<br>A frissítés beolvassa a módosított adatokat az eredeti adatforrásokból. |                   |         |                              |  |  |  |  |  |
| 6                                                                                                      | Hiba              |         | 18 Összesen 0 Megszakítva    |  |  |  |  |  |
|                                                                                                        | Tiba              |         | 0 Sikeres 18 Hiba            |  |  |  |  |  |
| Rés                                                                                                    | zletek:           |         |                              |  |  |  |  |  |
|                                                                                                        | Munkaelem         | Állapot | Üzenet                       |  |  |  |  |  |
| 8                                                                                                      | 2007 összesen     | Hiba    | Hiba részletes adatai        |  |  |  |  |  |
| 8                                                                                                      | 2008 összesen     | Hiba    | Hiba részletes adatai        |  |  |  |  |  |
| 8                                                                                                      | 2009 összesen     | Hiba    | Hiba részletes adatai        |  |  |  |  |  |
| 8                                                                                                      | 2010 összesen     | Hiba    | Hiba részletes adatai        |  |  |  |  |  |
| 8                                                                                                      | 2011 összesen     | Hiba    | Hiba részletes adatai        |  |  |  |  |  |
| 8                                                                                                      | 2012 összesen     | Hiba    | Hiba részletes adatai        |  |  |  |  |  |
| 8                                                                                                      | 2013 összesen     | Hiba    | Hiba részletes adatai        |  |  |  |  |  |
| 8                                                                                                      | 2014 összesen     | Hiba    | Hiba részletes adatai        |  |  |  |  |  |
| 8                                                                                                      | 2015 összesen     | Hiba    | Hiba részletes adatai        |  |  |  |  |  |
| 8                                                                                                      | 2016 összesen     | Hiba    | Hiba részletes adatai        |  |  |  |  |  |
| 8                                                                                                      | 2017 összesen     | Hiba    | Hiba részletes adatai        |  |  |  |  |  |
| 8                                                                                                      | 2018 összesen     | Hiba    | Hiba részletes adatai        |  |  |  |  |  |
|                                                                                                        |                   |         | Frissítés leállítása Bezárás |  |  |  |  |  |

44. ábra a táblák csoportos frissítésekor előforduló hiba jelzése

A munkafüzetből importált táblák frissítésekor a bővítmény törli azokat az adatokat, amelyek homogenizálással nem hozhatók a befogadó mező adattípusára.

Az aktualizálást alatt a bővítmény, táblák létrehozásának módjától függetlenül, mindig megjeleníti az Adatfrissítés panelt! A kimutatás forrásából létrehozott tábla is frissíthető, sőt a két objektum, a kimutatás és a tábla, kölcsönösen frissítik egymást. Magyarul, ha frissítjük az egyiket a bővítmény automatikusan átvezeti a másik objektumba az új adatokat. A kimutatás forrásának bővítése utasítás (Kimutatáseszközök, Elemzés, Adatok, Más adatforrás megadása, Más adatforrás megadása) automatikusan a táblát is bővíti.

A vágólappal létrehozott tábla nem frissíthető.

A bővítmény még a PowerPivot munkafüzet megnyitásakor sem frissíti automatikusan a táblákat, ezért a táblák aktualizálása, teljes egészében, a felhasználó feladata!

# kapcsolatok beolvasása

### fogalmak

A kapcsolat két tábla közötti logikai viszony, amely a rekordok szintjén valósul meg. Az összetartozó rekordok visszakereshetőségét a két tábla kapcsoló mezőiben álló, azonos bejegyzések biztosítják. Például megszámláltathatjuk az egyes megrendelők megrendeléseit a "megrendelők" és a "megrendelések" táblák közötti kapcsolat segítségével.

Ha a két tábla között nincs kapcsolat meghatározva, akkor a bővítmény minden megrendelőhöz az összes megrendelést társítja és a statisztikai vizsgálat eredményeként kapott megrendelés-szám minden megrendelőnél a megrendelések tábla rekordszámával lesz azonos.

A kapcsolat létrehozható [1] a definíciókat a forrás-adatbázisból beolvasva, [2] automatikusan a bővítmény algoritmusaival, vagy [3] felhasználói deklarációval. A bővítmény ablakában álló táblák és kapcsolataik alkotják a PowerPivot adatbázist.

Két logikailag összetartozó tábla egyikének rekordjaihoz általában a másik tábla több rekordja tartozik. Például: megrendelő-megrendelések, biztosítók-biztosítottak. Viszonylag ritka, de előfordulhat, hogy a két tábla tetszőleges rekordja a másik tábla egyetlen rekordjával tartozik össze. Például országok-fővárosok, megyék-megyeszékhelyek. Felmerülhet a kérdés, miért nem egy táblában állnak az összetartozó rekordok? Az elkülönített tárolás oka leggyakrabban: a nagy táblák nehéz kezelhetősége, az állandó és a gyakran változó-, vagy a nyilvános és bizalmas adatok elkülönített tárolásának igénye...

A bővítmény nem tesz különbséget az "egy az egyhez" és az "egy a többhöz" kapcsolat-típus között, de megköveteli, hogy a kapcsoló mezők egyike [1] csak egyedi bejegyzést tartalmazzon és [2] ne legyenek üres bejegyzései. A kapcsolatok tárgyalásánál ezt a mezőt és tábláját egy oldali táblának, illetve egy oldali kapcsoló mezőnek fogom nevezni. A kapcsolat másik oldalán álló tábla illetve kapcsoló mezője a több oldali tábla, illetve a több oldali kapcsoló mező.



45. ábra kapcsolatok és kapcsoló mezők ábrázolása kapcsolatnézetben

A PowerPivotban két tábla között több kapcsolat is létrehozható, de a bővítmény mindig csak az egyiket, az "aktív" kapcsolatot veszi figyelembe. Képletben függvénnyel aktiválhatjuk, a számítás idejére, az inaktív kapcsolatot.

A PowerPivot-kimutatás mindig a teljes PowerPivot adatbázist vizsgálja. Ez a szokásos működés. A felhasználó az "elrejtés az ügyféleszközök elől" művelettel vonhat ki táblát az elemzésből.

#### kapcsolatok importálása

Access adatbázisokból, tehát az "mdb" és a "accdb" kiterjesztésű fájlokból, nem csak az adatbázis tábláit, de a köztük lévő kapcsolatokat is beolvastathatjuk a *Kezdőlap, Külső adatok beolvasása, Adatbázisból, Az Access programból* paranccsal. A művelet végrehajtását a *Tábla importálása varázsló* segíti.

A segédprogram első, Kapcsolódás Microsoft Access-adatbázishoz feliratú ablakában meg kell adnunk az adatkapcsolat nevét és tallózás funkcióval ki kell választanunk a forrás-fájlt. Ezután célszerű a Kapcsolat tesztelése funkcióval ellenőrizni az adatbázis megnyithatóságát: nincs-e jelszóval
védve vagy aktuálisan zárolva. Az első esetben be kell jelentkeznünk az adatbázisba a *Felhasználó*név és a *Jelszó* mezők kitöltésével. A bővítmény felkínálja a jelszó mentését.

A következő lépésében Az adatimportálás módjának kiválasztása parancstáblán döntenünk kell, hogy a segédprogram grafikus eszközeivel, vagy egy SQL nyelvű lekérdezéssel határozzuk meg az importálandó adatokat. A Választás táblák és nézetek listájáról... utasításra a Táblák és nézetek kijelölése feliratú, Az importálandó adatokat megadó lekérdezés készítése parancsra pedig az SQL-lekérdezés megadása panel jelenik meg.

A segédprogram Táblák és nézetek kijelölése feliratú ablaka már ismerős számunkra. A már látott és a most megjelenített lista között csupán annyi a különbség, hogy itt az adatbázis táblái, míg ott a munkafüzet lapjai közül választhattunk. A kiválasztott táblához közvetlenül csatlakozó táblákat A kapcsolódó táblák kijelölése utasítással választhatjuk ki. Az importáló varázsló nem csak a kiválasztott táblákat, de a köztük lévő kapcsolatok is beolvassa.

A Befejezés gombra kattintva a varázsló utolsó, *Importálás* feliratú ablakában nyomon követhetjük a beolvasás fázisait. A program először a kijelölt táblákat importálja, majd a parancstáblán megjelenik az Adatok előkészítése felirat, amely a kapcsolat-deklarációk beolvasását jelenti. A bővítmény a határozatlan, tehát a "hivatkozási integritás megőrzése" szolgáltatással nem védett kapcsolatokat is beolvassa. Amikor a felirat előtt álló zöld nyíl pipára vált, megjelenik a lista harmadik oszlopában a *Részletek* link, amellyel a beolvasott kapcsolatok leírását jeleníthetjük meg.

| C   | Sikoros             | Összesen: 3 M                                        | egsz                                 | akítva: 0  |                       |                                   |   |
|-----|---------------------|------------------------------------------------------|--------------------------------------|------------|-----------------------|-----------------------------------|---|
| 4   | Sikeres             | Sikeres: 3                                           | R                                    | lészletek  |                       | ?                                 | Х |
| \és | zletek:             |                                                      | ſ                                    | Kananak    | t a fle               | R421 × 642-1, R421                |   |
|     | Munkaelem           | Állapot                                              |                                      | - Állapot: | Sikere                | grenij->remak grenij<br>es, Aktív | ^ |
| 2   | férfiak             | Sikeresen végrehajtva. 19 sor átvitele befejeződött. | Kapcsolat: gverekek [nő] -> nők [nő] |            | rekek ínől ->nők ínől |                                   |   |
| 2   | gyerekek            | Sikeresen végrehajtva. 8 sor átvitele befejeződött.  |                                      | - Allapot: | Sikere                | es, Aktív                         |   |
| 0   | nők                 | Sikeresen végrehajtva. 19 sor átvitele befejeződött. |                                      |            | <u> </u>              |                                   |   |
| 2   | Adatok előkészítése | Befejezve                                            | Ré                                   | szletek    |                       |                                   |   |

46. ábra Access adatbázis-táblák és kapcsolataik beolvasása

A Részletek parancstáblán kis nyilacska mutatja a beolvasott kapcsolat "irányát": a nyíl a kapcsolat több oldalán álló mezőtől indul és a kapcsolat egy oldalán álló mezőre mutat.

Adatnézetben a beolvasott táblák, nevük szerint, ABC sorrendben állnak.

A bővítmény az Access számláló adattípusú, valamint bájt, egész és hosszú egész méretű, szám adattípusú mezőinek Egész szám, az egyszeres, a dupla és a decimális méretű szám adattípusú mezőinek Tizedes tört szám adattípust állít be.

A bővítmény adatnézetben a mezőnév után álló piciny ábrácskával jelöli meg a tábla kapcsoló mezőit. A csak egyedi bejegyzéseket tartalmazó-, tehát a kapcsolat egy oldalán álló mező ábrácskája két, sorszámozott tábla, míg a több oldalon álló mező ikonja ugyanez az ábrácska egy nagyítóval kiegészítve. A mezőnévre mutatva a bővítmény szövegdobozt jelenít meg a kapcsolat másik oldalán álló tábla- és kapcsoló mezőjének nevével.

| 1 | nő 📲 🖬         | férfi 👘 🖬     | szszám 🔽    |
|---|----------------|---------------|-------------|
| 1 | Udvardi Emese  | Varga Levente | 26003035101 |
| 2 | Nyéki Mária    |               | 26405097746 |
| 3 | Sasvári Ágnes  | Kovács Pál    | 28010071226 |
| 4 | Keleti Boriska | Pásztor Vajk  | 28903257873 |
| 5 | Gyulai Debóra  | Kontra Zoltán | 26102176064 |
| 6 | Szebeni Dóra   | Rédei Örs     | 28305077092 |

<sup>47.</sup> ábra kapcsoló mezők jelzése adatnézetben, a mezőnevek mellett

#### kapcsolatnézet

A beolvasott táblák és kapcsolatok grafikus megjelenítését a bővítmény ablakának *Kezdőlap, Nézet, Diagramnézet* utasításával vagy az ablak jobb alsó sarkában álló *Diagram* parancsgombbal kezdeményezhetjük. A táblákat feliratozott téglalapok-, a kapcsolatokat vonalak szimbolizálják. A vonal közepén álló nyíl a kapcsolat több oldalán álló táblára mutat. Az egy oldali táblát a vonal végén álló egyes (1), a több oldalit a vonal másik végén álló csillag (\*) jelzi. A táblák és kapcsolataik rajzos megjelenítése a kapcsolat-háló, a megjelenítő felület pedig a kapcsolatnézet.

A kapcsolatnézet megjelenítési eszközeit az állapotsorban találjuk. Balról jobbra haladva az első vezérlő a Képernyőhöz igazítás feliratú négy-irányú nyilas ábrácska, melynek funkciója az ideális megjelenítési méretarány automatikus beállítása. A nagyító csúszkát a *Megjelenítés* feliratú kis menü követi, a táblák megjelenítését szabályozó jelölőnégyzetekkel.



48. ábra a kapcsolatnézet megjelenítési eszközei az állapotsorban

A táblák a címsorukra mutatva mozgathatók, illetve a szegélyüket "megfogva" méretezhetők. A kijelölt tábla a Ctrl+nyíl billentyűparanccsal is mozgatható. A teljes nézet nagyíthatósága mellett az egyes táblák külön-külön is nagyíthatók a jobb sarkukban álló, kattintásra vagy az egérmutató közelítésére megjelenő *Teljes méret* vezérlővel. Nagyításban a vezérlő felirata *Visszaállításra* változik.

A PowerPivot-kimutatás mezőlistájáról az Elrejtés az ügyféleszközök elöl utasítással letiltott mezőket és táblákat a kapcsolatnézetben halvány színekkel formázva látjuk. Ez a szokásos megjelenítés. Teljes rejtésük, majd ismételt megjelenítésük a Kezdőlap, Nézet, Rejtett elemek utasítással kezdeményezhető.

A kapcsolat vonalára mutatva a bővítmény a kapcsoló mezőket szegéllyel emeli ki.

A kapcsolat-hálón végzett módosításainkat a program a PowerPivot munkafüzet részeként menti, ha azonban elégedetlenek vagyunk az átalakítással, akkor a kapcsolatnézet eszköztárának *Elrendezés alaphelyzetbe állítása* parancsával visszatérhetünk a bővítmény elrendezéséhez.

#### műveletek kapcsolatnézetben

A kapcsolatnézet a kapcsolatok megjelenítésén és kezelésén felül, még néhány alapvető tábla- illetve mező-művelet elvégzésére is alkalmas. A táblát a címsorára-, a mezőt a nevére-, a kapcsolatot a vonalára kattintva jelölhetjük ki.

A tábla- és a mező menüje tartalmazza az átnevezés, a rejtés és a törlés parancsát. Az Ugrás utasítással a kijelölt objektumot jeleníthetjük meg adatnézetben. A kijelölt objektumok, beleértve kapcsolatot is, a *Delete* billentyűvel távolíthatók el a PowerPivot adatbázisból.

A kapcsolatnézetben elvégzett műveletek nem vonhatók vissza és nem ismételhetők.

# kapcsolatok automatikus létrehozása

### fogalmak

A PowerPivot-kimutatás lehetőséget teremt az elkülönítve tárolt adatok egységes elemzésére. Kapcsolatok hiányában azonban ez a szolgáltatás nem működne, ezért a bővítmény felhasználói kérésre megkísérli önállóan létrehozni a kapcsolatokat. A táblák kapcsoló mezőit a PowerPivot a mezők nevének, adattípusának és bejegyzéseinek vizsgálatával próbálja meghatározni. A felhasználói beavatkozás nélkül létrehozott kapcsolat mindenben egyenértékű a beolvasott illetve a manuálisan létrehozott kapcsolattal.

#### a modul működése

PowerPivot-kimutatás készítésekor, ha nem a sor- illetve az oszlopmezők tábláiból helyezünk mezőt az értékek területre, üzenet figyelmeztet a mezőlistán a kapcsolatok hiányára.

| Kimutatásmezők                                                     | - × | ré | gió              | -  | Elemszám - város |
|--------------------------------------------------------------------|-----|----|------------------|----|------------------|
|                                                                    |     | D  | él-Alföld        |    | 256              |
| Válassza ki a jelentésbe felvenni kívánt mezőket:                  | 5 + | D  | él-Dunántúl      |    | 256              |
|                                                                    | ~   | És | szak-Alföld      |    | 256              |
| Contradict light at a stick light large static large searches have |     | És | szak-Magyarorszá | ig | 256              |
| Szükseg lehet a tablak közötti kapcsolatokra.                      | ×   | Kč | özép-Dunántúl    |    | 256              |
| Automatikus felismerés LÉTREHOZÁS                                  |     | Kč | özép-Magyarorsz  | ág | 256              |
|                                                                    |     | N  | yugat-Dunántúl   |    | 256              |
| Keresés                                                            | P   | V  | égösszeg         |    | 256              |
|                                                                    |     |    |                  |    |                  |

49. ábra kapcsolatok nélküli adatbázis mezőlistája és kimutatása

A képen látható kapcsolatok nélküli adatbázis táblái: "régiók", "megyék", "városok". Kimutatással meg kell határoznunk a régióik városainak számát. A kapcsolatok hiánya miatt azonban a kimutatás minden régióhoz megjeleníti a városok tábla rekordszámát, azaz az összes város darabszámát.

Az automatikus-kapcsolat modult a figyelmeztető üzenet alatt megjelenített Automatikus felismerés... vezérlővel indíthatjuk el. A művelet fázisait a megjelenített Kapcsolatok automatikus felismerése panelen követhetjük nyomon, amelyen eleinte csak egyetlen, a művelet megszakítására szolgáló, Mégse parancsgomb áll. Az eljárás befejezését követően a bővítmény ezen a panelen tájékoztat a művelet eredménytelenségéről vagy a létrehozott kapcsolatok számáról.

| Kapcsolato           | k autom                  | atikus felisr                 | nerése                                               |                      | ?                 | ×        |         |         |
|----------------------|--------------------------|-------------------------------|------------------------------------------------------|----------------------|-------------------|----------|---------|---------|
| Kapcsol<br>A művelet | <b>atok f</b><br>az adat | <b>elismer</b><br>tok összete | <b>ése és létrehozása</b><br>ettségétől függően több | percet is igén       | ybe vehe          | et.      |         | 1       |
| Kaj                  | pcsolat                  | észlelése:                    | folyamatban                                          |                      |                   |          | ×       |         |
|                      |                          |                               |                                                      |                      | Még               | Ise      | vehet.  |         |
|                      |                          | Kapcsola                      | t észlelése: kész                                    |                      |                   |          |         | ×       |
|                      | -                        | Nem talá                      | hatók új kapcsolatok                                 | K <u>a</u> pcsolatok | kezelése.         |          | Bezárás | vehet.  |
|                      |                          | $\checkmark$                  | Kapcsolat észlelése: ké                              | ész                  |                   |          |         |         |
|                      |                          |                               | 2 uj kapcsolat létrehoz                              | zva                  | K <u>a</u> pcsola | tok keze | elése   | Bezárás |

50. ábra az automatikus-kapcsolat modul működését mutató parancstábla három lehetséges állapota

A *Kapcsolatok kezelése…* gombra kattintva megtekinthetjük a létrehozott kapcsolatokat. A második oszlopban az egy oldali tábla nevét és zárójelben a kapcsoló mező nevét olvashatjuk. A több oldali tábla és kapcsolómezőjének neve a harmadik, *Kapcsolódó keresési tábla* feliratú oszlopban áll. A panel jobb oldalán lévő parancsgombok a kijelölt kapcsolat kezelésére, illetve az automatikuskapcsolat modul indítására szolgálnak.

Aktív kimutatás mellett az automatikus kapcsolat-felismerést a PowerPivot, Kapcsolatok, Észlelés paranccsal is elindíthatjuk, de ebben az esetben nem a fent ismertetett panelt jeleníti meg a bővítmény.

| Kapcsolat                                                                                           |                                                                                                               | ? ×           |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------|
| Észlelés és létrehozás                                                                              |                                                                                                               |               |
| Folyamatban van a kapcsolatok észlelése és létr<br>Az adatok összetettségétől függően ez több perce | Létrehozott kapcsolatok:<br>t. [városok].[megye] -> [megyék].[megye]<br>[megyék].[régió] -> [régiók].[régió]] |               |
| Befejezve                                                                                           |                                                                                                               | -             |
| Részletek:                                                                                          |                                                                                                               |               |
| Munkaelem                                                                                           | Összegzés                                                                                                     |               |
| Kapcsolatok észlelése: kész                                                                         | <u>Részletek</u>                                                                                              | 1             |
| Kapcsolatok létrehozása: kész                                                                       | Résziptek                                                                                                     | ОК            |
|                                                                                                     | Г                                                                                                             |               |
| raibeszeupanei automatikus bezarasa                                                                 | L                                                                                                             | bezaras Megse |

51. ábra az automatikus-kapcsolat modul másik parancstáblája

Az Észlelés paranccsal indított kapcsolat-felismerés parancstábláján a Részletek hivatkozásra kattintva tekinthetjük meg a létrehozott kapcsolatot. A megjelenített definíció nem szerkeszthető!

A kapcsolatok automatikus létrehozása, még kis rekordszámú táblák esetén is, rendkívül időigényes, ezért a hatékonyság érdekében, tartsuk szem előtt a szolgáltatás korlátait.

A bővítmény mindig csak az aktuális kimutatás-elrendezés statisztikai vizsgálatához szükséges táblákat próbálja összekapcsolni! Ez általában egy kapcsolat létrehozását jelenti, de a csak közvetett logikai viszonyban álló táblák vizsgálatakor az összes szükséges kapcsolat létrejön. Folytassuk az előbb felvázolt példát!



52. ábra

a közvetett logikai viszonyban álló "régiók" és "városok" táblák

A bővítmény közvetlenül nem tudja összekapcsolni a "régiók" táblát a "városok" táblával, ezért először kialakítja a városok-megyék, majd a megyék-városok kapcsolatot.

A bővítmény csak szöveg vagy egész szám adattípusú mezőt választ kapcsoló mezőnek, ezért a munkafüzetből importált, egész számokat tartalmazó mezők adattípusát Tizedes tört szám típusról át kell állítani Egész szám típusúra!

Ha a vizsgált mező minden bejegyzése egyedi és nincs üres bejegyzése, akkor ez lehet az egy oldali kapcsoló mező. Ha a modul talál egy olyan mezőt, amelynek bejegyzései több mint kilencvenöt százalékban szerepelnek az először kiválasztott mezőben, akkor ez lesz a több oldali kapcsoló mező. Az automatikus kapcsolat-létrehozás szolgáltatás a mezők nevét is vizsgálja. A kapcsolat csak akkor jön létre, ha a következő feltételek teljesülnek.

[1] A két név azonos. A modul a kis- és nagybetűket valamint az elválasztó karaktereket (szóköz, kötőjel, alsóvonal) nem különbözteti meg. A különböző sorrendű, de megegyező szavakat tartalmazó neveket a modul azonosnak tekinti.

[2] Az egy oldali mező egyszavas nevének egy darabja a több oldali név egyik "szava". A kapcsolat létrehozásához szükséges egyező karakterek száma legalább az egy oldali név hosszának tizede, felfelé egészre kerekítve: KEREK.FEL( HOSSZ( <egy oldali név> )/10; 0). Az egyező karakterláncnak az egy oldali név elejéről kell származnia, a következő szabály szerint: BAL( <egy oldali név> ; PADLÓ( HOSSZ( <egy oldali név> ); 2 )/2 - 1 + KEREK.FEL( HOSSZ (<egy oldali név> )/10; 0 )). Lássunk egy példát! Az egy oldali név "termékazonosító". A kapcsolat létrehozásához szükséges egyező karakterek száma: KEREK.FEL( HOSSZ( "termékazonosító" )/10; 0 )  $\rightarrow$  2. Az egy oldali név eleje, ahonnan a két egymást követő karakternek származnia kell: BAL( "termékazonosító" ; PADLÓ( HOSSZ( "termékazonosító" ); 2 )/2 - 1 + KEREK.FEL( HOSSZ ( "termékazonosító" )/10; 0 ))  $\rightarrow$  "termékaz". Tehát, ha ebből a karakterláncból a több oldali név önállóan tartalmaz, két tetszőleges, egymás után álló karaktert, akkor a kapcsolat létrejön. Például a több oldali név lehet: "árú er" vagy "árú az".

[3] Ha az egy oldali név több szóból áll, akkor a több oldali névnek sorrendben tartalmaznia kell az egy oldali név minden szavának egy részét, az előző szabályban előírt módon.

| egy oldali  | azonosító | termék azonosító | alkatrész kód | termékazonosító | belső raktárkészlet |
|-------------|-----------|------------------|---------------|-----------------|---------------------|
| több oldali | AZONOSÍTÓ | termék_azonosító | kód alkatrész | árú az          | br                  |

53. ábra

néhány példa az automatikus kapcsolat név-követelményeinek szemléltetésére

Egy az egyes automatikus-kapcsolat esetén a statisztikai mezőt tartalmazó tábla lesz a "több oldali tábla", azaz a létrehozott kapcsolat a statisztikai mező táblájára mutat.

# kapcsolat manuális létrehozása

### fogalmak

Az eddig megismert két módszer, a beolvasás és az automatikus létrehozása mellett, természetesen a kapcsolat felhasználói deklarációval is létrehozható. A kapcsolat meghatározása a kapcsoló mezők megadásából áll. A PowerPivot szóhasználatában a kapcsolat egy oldalán álló tábla és kapcsoló mezőjének neve "keresési táblázat" illetve "keresési oszlop".

Kapcsoló mezőnek tetszőleges nevű és adattípusú mezőt választhatunk, de a kapcsolat csak akkor jön létre, ha a kapcsoló szerepre kijelölt mezők egyike nem tartalmaz ismétlődő- és üres bejegyzéseket. Ha ez a két kritérium teljesül, akkor a kapcsolat létrejön. Ebből a tényből azonban az is következik, hogy a bővítmény nem akadályozza meg a funkciótlan kapcsolat kialakítását. Például kiválaszthatunk olyan több oldali kapcsoló mezőt, amelynek egyetlen bejegyzése sem szerepel az egy oldali kapcsoló mezőben.

A bővítmény a kapcsolatokkal összefüggésben több parancstáblán az adatbázis-kezelés terminológiájával él: a kapcsolat egy oldalán álló mezőt "elsődleges kulcsnak" míg a több oldalit, "külső kulcsnak" nevezi. Utóbbi kifejezés hibás: a kapcsolat több oldalán álló mező az "idegen kulcs" mező.

Két tábla között több kapcsolat is létrehozható. Természetesen a számítások végrehajtásakor a bővítmény csak egyetlen kapcsolatot vesz figyelembe. A használatra kijelölt kapcsolat az aktív kapcsolat. A két tábla között létrehozott első kapcsolat automatikusan aktív.

#### nem kapcsolódó rekordok

A különböző táblákban álló, logikailag összetartozó rekordok visszakereshetőségét a kapcsoló mezők azonos bejegyzései biztosítják. A bővítmény azonban nem követeli meg, hogy a több oldali tábla kapcsoló mezőjének bejegyzései szerepeljenek az egy oldali tábla kapcsoló mezőjében. Másként fogalmazva a több oldali táblában állhatnak olyan rekordok is, amelyeknek nincs kapcsolódó rekordjuk az egy oldali táblában. Ezek a nem kapcsolódó rekordok. A kimutatásban a bővítmény a nem kapcsolódó rekordokat egy kalap alá veszi és az "(üres)" feliratú "tételben" jeleníti meg, amely mindig a valós tételeket követően, az utolsó helyen áll a kimutatásban.





54. ábra nem kapcsolódó rekordok adatainak összesítése a kimutatásban

A képen látható kimutatás a kéttáblás (szervizek-javítások) adatbázis elemzésére készült: a számla mező értékeit összegzi a szerviz mező egyedi értékei szerinti csoportosításban. A szervizek táblában nem szereplő cégek számláinak összegét az (üres) címkéjű tétel tartalmazza.

Nem kapcsolódó rekordokat találunk, a már ismertetett, férfiak-nők-gyerekek adatbázis elemzésére létrehozott kimutatásban is.



nem kapcsolódó rekordok adatainak összesítése a kimutatásban

A kép tanúsága szerint két gyereknek az apukája nem található a férfiak táblában. Nem kapcsolódó rekordok tehát közvetett kapcsolatban álló táblák elemzésekor is megjelenhetnek a kimutatásban.

### a kapcsolat létrehozása

Adatnézetben a Tervezés, Kapcsolatok, Kapcsolat létrehozása utasítással kezdeményezhetjük a műveletet. A megjelenő panel a táblák és a kapcsoló mezők egyszerű kiválasztását teszi lehetővé.

| Kapcsolat le  | étrehozása |            |            |            |          |                       |              | ?          | ×   |
|---------------|------------|------------|------------|------------|----------|-----------------------|--------------|------------|-----|
| Jelölje ki a  | z egymás   | hoz kapcs  | solódó táb | olákat és  | oszlop   | okat.                 |              |            |     |
| jav ítások    |            |            |            |            |          | ~                     |              |            |     |
| javítás       | rendszám   | sajáthibás | s számla   | szerviz    |          | szervizbe             | szervizből   |            |     |
| 1             | JAF-794    | False      | 583200     | Répássy I  | ⟨ft.     | 1999. 09. 08. 0:00:00 | 1999. 09. 18 | . 0:00:00  |     |
| 2             | WYA-469    | True       | 568000     | Répássy I  | Kft.     | 1999. 09. 08. 0:00:00 | 1999. 09. 19 | . 0:00:00  |     |
| 3             | WYA-471    | False      | 473900     | Budai Aut  | ójav ító | 1999. 09. 18. 0:00:00 | 1999. 09. 25 | . 0:00:00  |     |
| 4             | JAF-796    | False      | 592900     | Budai Aut  | ójav ító | 1999. 09. 26. 0:00:00 | 1999. 10. 07 | . 0:00:00  |     |
| 5             | SBA-444    | True       | 599500     | Budai Aut  | ójav ító | 1999. 10. 02. 0:00:00 | 1999. 10. 12 | . 0:00:00  |     |
| szerviz       |            |            |            |            |          | ~                     |              |            |     |
| irány ítószár | n szerviz  |            | utca-szám  | 1          | város    |                       |              |            |     |
| 1213          | Tóth & Fi  | ai         | Róka utca  | 13.        | Budape   | est                   |              |            |     |
| 1133          | Fekete A   | utószerviz | Árbóc utca | a 29.      | Budape   | est                   |              |            |     |
| 1039          | FCA        |            | Almos utca | a 27.      | Budape   | est                   |              |            |     |
| 1174          | Répássy    | Kft.       | Dobos Istv | án utca 2. | Budape   | est                   |              |            |     |
| 1038          | M5 Autós   | szerviz    | Meggy utc  | a 8.       | Budape   | est                   |              |            |     |
|               |            |            |            |            |          |                       |              |            |     |
| <u>⊿</u> ktív |            |            |            |            |          |                       | <u>о</u> к   | <u>M</u> é | gse |

56. ábra a Kapcsolat létrehozása parancstábla

A panel két-két tábla-listát és a tábla első öt rekordjának megjelenítésére szolgáló területet foglal magába. Utóbbin kattintással jelölhetjük ki a kapcsoló szerepre szánt mezőt. A táblákat, a kapcsolatban betöltött funkciójuktól függetlenül, tetszőleges sorrendben adhatjuk meg.

A Kapcsolat létrehozása parancstábla megnyitásakor a bővítmény a panel felső részébe az aktív táblát automatikusan betölti és kijelöli a kurzort tartalmazó mezőjét. A második tábla kiválasztását követően a bővítmény automatikusan kijelöli azt a mezőt, amelynek neve azonos az első táblában kiválasztott mezőével. Ha nem talál ilyet, akkor az első mezőt.

A kapcsolat létrehozását adatnézetben a kapcsoló szerepre szánt mező nevének menüjéből is kezdeményezhetjük. A *Kapcsolat létrehozása…* utasítás kiadását követően a bővítmény betölti a fent ismertetett panelt az aktív táblával és a kijelölt kapcsoló mezővel.

A bővítmény rendelkezik egy kapcsolat-kezelő parancstáblával is, amelyet a *Tervezés, Kapcsolatok, Kapcsolatok kezelése* utasítással jeleníthetünk meg. A panel funkciói: új kapcsolat létrehozása, a kijelölt kapcsolat szerkesztése és törlése. Az erről panelról indított létrehozás-deklaráció is a *Kapcsolat létrehozása* parancstáblán történik.

| Kapcsolato | ok kezelése                   |                      |                       | _                |          | $\times$ |
|------------|-------------------------------|----------------------|-----------------------|------------------|----------|----------|
| Létrehozá  | s Szerkesztés Törlés          |                      |                       |                  |          |          |
| Aktív      | 1. tábla 🔺                    | Számosság            | Szűrő iránya          | 2. tábla         |          |          |
| lgen       | autohasználat [rendszám]      | Több-az-egyhez (*:*) | << lde: autohasználat | autók [rendszá   | m]       |          |
| lgen       | autohasználat [személyi szám] | Több-az-egyhez (*:*) | << lde: autohasználat | munkatársak [s   | személyi | szám]    |
| Igen       | javítások [rendszám]          | Több-az-egyhez (*:*) | << lde: jav ítások    | autók [rendszá   | m]       |          |
| lgen       | javítások [szerviz]           | Több-az-egyhez (*:*) | << lde: jav ítások    | szerviz [szerviz | ]        |          |
|            |                               |                      |                       |                  |          |          |
|            |                               |                      |                       |                  |          |          |
|            |                               |                      |                       |                  | Bez      | árás     |

57. ábra a kapcsolat-kezelő panel

Adatnézetben a több oldali kapcsoló mező nevének menüjében megjelenő Ugrás a kapcsolódó táblához utasítással a kapcsolat egy oldali mezőjét aktiválhatjuk.

Kapcsolatnézetben a kapcsolat létrehozása egérrel történik: az egy oldali tábla kapcsoló szerepre kiválasztott mezőjét áthúzzuk a több oldali tábla kapcsolónak szánt mezőjére. Ha az egy oldali kapcsoló mező minden bejegyzése egyedi és nem tartalmaz üres bejegyzéseket, akkor a kapcsolat létrejön, amelyet a táblák között megjelenített kapcsolat-szimbólum mutat.



58. ábra a nem megfelelő kapcsolómező gerjesztette hibaüzenetek kapcsolatnézetben

Ha elfeledkeztünk a kapcsolatokról, akkor kimutatás készítésekor, a segédablak LÉTREHOZÁS... vezérlőjével pótolhatjuk a mulasztást. Az utasítás kiadása után egy kétsoros panel felső sorában a több oldali-, alsó sorában az egy oldali táblát és kapcsoló mezőjét kell listából kiválasztanunk. Ha a sorrend nem megfelelő a bővítmény megcseréli a definícióban a táblákat. Erről a korrekcióról a parancstábla alján kapunk egy félrevezető információt.

|                             |                                                                     | ?                                                                                                                                                                                            | Х                                                                                                                                                                                                           |
|-----------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| zlopok kivála               | asztása                                                             |                                                                                                                                                                                              |                                                                                                                                                                                                             |
|                             | Oszlop (külső):                                                     |                                                                                                                                                                                              |                                                                                                                                                                                                             |
| $\sim$                      | nő                                                                  |                                                                                                                                                                                              | $\sim$                                                                                                                                                                                                      |
|                             | Kapcsolódó os <u>z</u> lop (elsődleges):                            |                                                                                                                                                                                              |                                                                                                                                                                                                             |
| $\sim$                      | nő                                                                  |                                                                                                                                                                                              | $\sim$                                                                                                                                                                                                      |
| smétlődő ért<br>oszlopban c | ékeket tartalmaz. Ha kapcsolatot sz<br>sak egyedi értékek lehetnek. | eretne lét                                                                                                                                                                                   | rehozni                                                                                                                                                                                                     |
|                             | ОК                                                                  | Mé                                                                                                                                                                                           | ase                                                                                                                                                                                                         |
|                             | smétlődő ért                                                        | zlopok kiválasztása<br>Oszlop (külső):<br>Nő<br>Kapcsolódó os <u>z</u> lop (elsődleges):<br>Nő<br>smétlődő értékeket tartalmaz. Ha kapcsolatot sz<br>oszlopban csak egyedi értékek lehetnek. | ?<br>zlopok kiválasztása<br>Oszlop (külső):<br>Nő<br>Kapcsolódó os <u>z</u> lop (elsődleges):<br>Nő<br>smétlődő értékeket tartalmaz. Ha kapcsolatot szeretne lét<br>oszlopban csak egyedi értékek lehetnek. |

59. ábra a segédablak LÉTREHOZÁS... vezérlőjével megjeleníthető panel

A panel bal sarkában álló Kapcsolatok kezelése... utasítással egy újabb kapcsolat-kezelő parancstáblával ismerkedhetünk meg, amelynek funkciói azonosak az előbb ismertetett paneléval, kiegészítve az automatikus-kapcsolat modult indító Automatikus felismerés... parancsgombbal.

| Kapcsolato | ok kezelése |                           | ? ×                             |
|------------|-------------|---------------------------|---------------------------------|
| Állapot    | Tábla 🔺     | Kapcsolódó keresési tábla | Új                              |
| Aktív      | nők (férfi) | férfiak (férfi)           | A <u>u</u> tomatikus felismerés |
|            |             |                           | <u>S</u> zerkesztés             |
|            |             |                           | <u>A</u> ktiválás               |
|            |             |                           | <u>I</u> naktiválás             |
|            |             |                           | Törlés                          |

60. ábra a 59. ábra parancstáblájának Kapcsolatok kezelése... vezérlőjével megjeleníthető panel

Összegezve tapasztalatainkat, a kapcsolat létrehozására és kezelésére két különböző panel-páros áll a rendelkezésünkre, egy bővítmény ablakában és egy másik a program ablakában.

#### a kapcsolat törlése és megszakadása

A kapcsolat törléséről beszélünk, ha a felhasználó távolítja el a létező kapcsolatot. Ezt megteheti a kapcsolat-kezelő parancstáblákon, vagy kapcsolatnézetben a kapcsolat vonalának menüjéből. Kapcsolatnézetben a kijelölt kapcsolat a *Delete* billentyűvel is törölhető.

Ha a kapcsolatot a bővítmény távolítja el, akkor a kapcsolat megszakadásáról beszélünk.

Mező törlésekor a bővítmény a művelet végrehajtásához megerősítést kér, de nem figyelmeztet a mező esetleges kapcsoló szerepére. Így a felhasználó, akarva-akaratlanul, használhatatlanná teheti az összeköttetést. A PowerPivot a mező hiányának észlelését követően, eltávolítja a sérült kapcsolatot.

Ha az importált tábla kapcsoló mezőjét nem a törlés funkcióval, hanem a tábla tulajdonságainak módosításával távolítjuk el, akkor a bővítmény figyelmeztet: az érintett kapcsolat törölve lesz a tulajdonságok frissítése követően.

# **Data Analysis Expressions**

### a DAX képlet jellemzői

A bővítmény képleteiben használandó operátor- és függvény-készletet, valamint a használatukat leíró szemantikai- és szintaktikai szabály-rendszert "Data Analysis Expressions", röviden DAX-nak nevezzük. Az angol kifejezés jelentése "adatelemző kifejezések".

A DAX képletnek is egyenlőségjellel (=) kell kezdődnie, de az előjel (-, +), mint képlet-jelző a bővítményben hibát eredményez!

A bővítmény és a program aritmetikai (^, \*, /, +, -), összehasonlító (<, <=, =, >=, >, <>) és szövegösszefűző (&) operátorai azonosak, de a logikai műveletek deklarálása már eltérő.

| operátor | művelet         |
|----------|-----------------|
| NOT      | logikai tagadás |
| &&       | logikai ÉS      |
| I        | logikai VAGY    |
| IN       | VAGY láncolás   |



Az IN szócskával csoportot határozhatunk meg, amelynek elemei (konstansok és kifejezések) logikai VAGY viszonyban állnak egymással. Az elemeket kapcsos zárójelek között, pontosvesszővel elválasztva kell felsorolni. A szövegeket és a dátumokat idézőjelzni kell. Például, IN { "Vác" ; "Érd" ; "Ózd" ; "Fót" }. Az IN műveletet VAGY láncolásnak is nevezhetjük, mert a csoportot a VAGY operátorral is képezni tudjuk: "Vác" || "Érd" || "Ózd" || "Fót". Tehát a DAX-ban van NOT és van IN operátor, de NOT IN operátor nincs! Hiába logikus, a NOT IN{ "Vác" ; "Érd" ; "Ózd" ; "Fót" } kifejezés a DAXban érvénytelen! De erről majd a szűrő függvényeknél részletesen beszélek. Majd látni fogjuk azt is, hogy a logikai operátorok mellett a DAX-nak is vannak logikai függvényei.

DAX-képletben a százalék jel (%) nem használható.

A dátum-konstansokat, mint az Excelben, idézőjelek között kell beírnunk. A bővítmény képleteiben is használhatjuk a perjeles formátumot: évszám két számjeggyel, perjel, hónapszám vezető nulla nélkül, perjel, napszám vezető nulla nélkül (éé/h/n). A perjel helyett kötőjelet is alkalmazhatunk.

| művelet        | Excel                | DAX           |
|----------------|----------------------|---------------|
| = üres + üres  | 0                    |               |
| = üres * 15    | 0                    |               |
| = üres * üres  | 0                    |               |
| = 15 / 0       | #ZÉRÓOSZTÓ (#DIV/o!) | œ             |
| = 15 / üres    | #ZÉRÓOSZTÓ (#DIV/o!) | ω             |
| = üres / 15    | 0                    |               |
| = üres / o     | #ZÉRÓOSZTÓ (#DIV/o!) |               |
| = o / üres     | #ZÉRÓOSZTÓ (#DIV/o!) | NaN           |
| = üres / üres  | #ZÉRÓOSZTÓ (#DIV/o!) |               |
| = üres    üres | #ÉRTÉK! (#VALUE!)    | HAMIS (FALSE) |
| = üres && üres | #ÉRTÉK! (#VALUE!)    | HAMIS (FALSE) |

A képletben szereplő üres bejegyzések kezelése több ponton eltér a programban megszokottól.

A táblázatból leszűrhető legfonosoabb következtetés: a DAX képlet kiértékelése "üres eredmény"re is vezethet. És ez nem csak üres bejegyzésű rekordok feldolgozásakor fordulhat elő! Másként fogalmazva: nem minden DAX képlet ad eredményt.

<sup>62.</sup> ábra eltérések az üres cellák illetve az üres bejegyzések kezelésében (a DAX oszlopban álló üres cellák üres eredményt jelentenek)

A műveletek végrehajtási sorrendje megegyezik a programban megszokottal. A bővítmény ablakában nem működik az egyetlen függvényt tartalmazó képletekben a függvény második zárójelének automatikus bevitele.

#### nevek a DAX képletében

A DAX képletében névvel azonosított objektumok a táblák, a mezők és az egyéni összesítések. Az objektum-nevek nem tartalmazhatnak vezető, illetve záró szóközt, vezérlő karaktereket és a . , ;':/\\*|?&%\$!+=()[]{}<> karaktereket.

A tábla és az egyéni összesítés nevének az adatbázisban, a mező nevének a táblában kell egyedinek lennie. A táblaneveket aposztrófok között, a mezőneveket és az egyéni összesítések neveit szögletes zárójelek között kell a képletbe beírni. Ha a táblanév nem tartalmaz ékezetes karaktert és szóközt, akkor az aposztrófok elhagyhatók.

A képletben a mezőnevek állhatnak önállóan vagy a táblanévvel együtt: [mezőnév] vagy, 'táblanév'[mezőnév]. Utóbbi forma használata, számos függvény esetében, előírás. A bővítmény ezt az azonosítót "minősített névként" emlegeti.

A bővítmény nem tartalmaz név-követő szolgáltatást, ezért egy név módosítást követően a felhasználónak kell az objektum minden előfordulásában az új nevet megadnia!

#### adattípusok konvertálása a képletben

A képlet kiértékelése közben a bővítmény kísérletet tesz a nem megfelelő típusú adat átalakítására. Ha a konvertálás sikeres, akkor a művelet végrehajtásra kerül, különben hibaüzenetet kapunk.

|                   |   | Egész szám | Tizedes tört szám | Pénznem           | Dátum             |
|-------------------|---|------------|-------------------|-------------------|-------------------|
| Egész szám        | + |            | Tizedes tört szám | Pénznem           | Dátum             |
|                   | - |            | Tizedes tört szám | Pénznem           | Egész szám        |
|                   | * |            | Tizedes tört szám | Pénznem           | Egész szám        |
|                   | 1 |            | Tizedes tört szám | Tizedes tört szám | Tizedes tört szám |
| Tizedes tört szám | + |            |                   | Tizedes tört szám | Dátum             |
|                   | - |            |                   | Tizedes tört szám | Tizedes tört szám |
|                   | * |            |                   | Pénznem           | Tizedes tört szám |
|                   | 1 |            |                   | Tizedes tört szám | Tizedes tört szám |
| Pénznem           | + |            |                   |                   | Dátum             |
|                   | - |            |                   |                   | Tizedes tört szám |
|                   | * |            |                   |                   | Pénznem           |
|                   | 1 | Pénznem    | Pénznem           |                   | Pénznem           |
| Dátum             | + |            |                   |                   |                   |
|                   | - | Dátum      | Dátum             | Dátum             |                   |
|                   | * |            |                   |                   |                   |
|                   | 1 |            |                   | Tizedes tört szám |                   |

63. ábra

különböző típusú adatokkal végzett aritmetikai műveletek eredményének adattípusa

A táblázat a különböző típusú adatokkal történő aritmetikai műveletek eredményének típusát mutatja. A műveleti jel bal oldalán a sor adattípusa, jobb oldalán az oszlop adattípusa áll. Tehát a táblázat első sora mutatja, milyen adattípusú eredményt kapunk, ha egészhez törtet adunk, ha egészhez pénzt adunk, ha egészhez dátumot adunk. A táblázat második sorában az áll, milyen eredményt kapunk ha egészből törtet, ha egészből pénzt, ha egészből dátumot vonunk le...

A táblázat tehát minden lehetséges variációt kétszer tartalmaz. Ha az eredmény típusára a két elem felcserélése nincs hatással, akkor az adott páros második előfordulásában, az áttekinthetőséget javítva, az eredményt már nem tüntettem fel. A szövegként megadott számok, egésznek vagy törtnek minősülnek. A logikai értékek ebből a szempontból egész számoknak tekinthetők.

# számított objektumok

#### számított mező fogalma

A bővítményben három, DAX képleten alapuló, objektumot hozhatunk létre: [1] számított mezőt, [2] automatikus összesítést és [3] egyéni összesítést. Mindhárom objektumot névvel azonosítjuk. Az összesítések statisztikai objektumok, egy meghatározott rekord-csoport adataival kalkulálnak, a számított mező képlete viszont csak egyetlen rekord adatait dolgozza fel.

A számított mező egy névvel azonosított, felhasználói képleten alapuló, származtatott objektum a táblában. Másként fogalmazva, a számított mező egy DAX képlet, amelyet a bővítmény a tábla minden egyes rekordjában elhelyez és kiszámol. A számított mező egyenrangú a tábla többi mezőjével, így másik számított mező képletében is szerepelhet.

Megjelenítésükben a bővítmény nem tesz különbséget a tábla forrás- és származtatott mezői között. Ennek ellenére létezhet olyan helyzet, amelyben fontos lehet a megkülönböztetés, ezért a névben, például csupa nagybetűket használva, jelezhetjük a számított mezőt.

Ha a számított mező képletében egy másik tábla is szerepel, akkor a bővítménynek a tábla minden egyes rekordjához meg kell keresnie a másik tábla kapcsolódó rekordjait. Ezt a funkciót látja el a RELATED függvény, amelynek egyetlen argumentuma a másik tábla egyik mezője. Természetesen a táblák közötti kapcsolatok deklarálásával biztosítani kell a függvény számára az összetartozó adatok kikereshetőségét. Nézzünk egy példát! Az alábbi ábra, "városok" táblájának, BERUHÁZÁS mezője számított mező. Képlete: = [szorzó] \* RELATED( 'régiók'[összeg] ).



64. ábra a példákban szereplő "BERUHÁZÁS" és a "VÁROSOK SZÁMA" számított mezők

A RELATED függvény tehát kikeresi a "régiók" táblából az aktuális "város" régiójában rendelkezésre álló "összeget". Ha azonban a régiók városainak számát akarjuk meghatározni, akkor már a RELATED-TABLE függvényt kell alkalmaznunk a VÁROSOK SZÁMA számított mezőben. Képlete: =COUNTROWS ( RELATEDTABLE( 'városok' )). A RELATEDTABLE függvény nem egyetlen adatot, hanem egy egész táblázatot ad eredményül: az aktuális "régió" a városok táblában álló, összes kapcsolódó rekordját tartalmazó táblát. Ennek a virtuális táblának a rekordjait számlálja meg a COUNTROWS függvény.

# számított mező létrehozása

Adatnézetben a mezők után álló, üres cellákat tartalmazó oszlop a számított mező létrehozásának eszköze. Az oszlop egy cellájára, majd a szerkesztőlécre kattintva, hozzáláthatunk képlet összeállításához. A kurzor az F2 funkcióbillentyűvel is elhelyezhető a szerkesztőlécen. A szalagról a Tervezés, Oszlopok, Hozzáadás utasítással indíthatjuk a műveletet.

A nevek beírását a bővítmény névkiegészítője segíti. Listájában a le, fel nyilakkal lépegethetünk. A kiválasztott elemet a *Tab* billentyűvel vagy rámutatással és dupla kattintással tudjuk beíratni a képletbe. A listában felül állnak a begépelt karakterekkel kezdődő függvénynevek és őket követik az adott betűkkel kezdődő objektum-nevek.

|    |              |    |     | X     | $\checkmark$ | f <sub>x</sub> = | =H                   |                               |                   |    |                    | /                 |               |                              |              |           |
|----|--------------|----|-----|-------|--------------|------------------|----------------------|-------------------------------|-------------------|----|--------------------|-------------------|---------------|------------------------------|--------------|-----------|
| J. | régió        | ę. |     | ös    | szeg         |                  | (k)                  | HASONEFIL                     | TER               |    | Oszlop h           | oz                |               |                              |              |           |
| 1  | Dél-Alföld   |    |     |       |              | 3,9              |                      | HASUNEVA                      | LUE               | 43 |                    | 7                 |               |                              |              |           |
| 2  | Dél-Dunántúl |    |     |       |              | 3,9              | 00                   | IOOK                          |                   | 34 |                    | 1                 |               |                              |              |           |
| 3  | Észak-Alföld |    |     |       |              |                  | -                    | × 🗸 .                         | f <sub>*</sub> =' |    |                    |                   |               |                              | [            |           |
|    |              | 1  | rég | ιó    |              |                  | Pa 💽                 | összeg                        |                   | ·  | megyék'            | 1A                | <b>*</b>      | Oszlop ho                    | 02           |           |
|    |              | 1  | Dé  | I-Alt | öld          |                  |                      |                               | 3,9               |    | régiók'<br>vézezek |                   | 43            |                              | 7            |           |
|    |              | 2  | Dé  | l-Du  | nánt         | túl              |                      |                               | 3,9               |    | Valusuk            |                   | 34            |                              | (            |           |
|    |              | 3  | Ész | ak-   | Alföl        | d_               |                      |                               |                   | *  | X 🗸                | fx =[             |               |                              |              |           |
|    |              |    |     |       |              |                  | / ré<br>1 Dé<br>2 Dé | gió<br>Èl-Alföld<br>Èl-Dunánt | ا<br>úا           | 6  | összeg             | 3,9<br>3,9<br>3,9 | ן<br>ני<br>ני | régió]<br>VÁROSOK<br>összeg] | SZÁMA]<br>J+ | szlop hoz |
|    |              |    |     |       |              |                  | 3 És                 | zak-Alföld                    | <u> </u>          | _  |                    | 3,0               | _             | ~                            | 56           |           |

65. ábra a függvények, a táblák és a mezők jelzése a névkiegészítő listájában

A bővítmény ablakában használhatjuk a kattintásos névbevitelt is. A tábla nevét a tábla fülére-, a mező nevét tetszőleges bejegyzésére-, az egyéni összesítés nevét a számítási területen álló képletére kattintva írathatjuk be a szerkesztés alatt álló kifejezésbe.

A bővítmény már az összeállításakor elemzi a születő képletet. Meghatározott karakterek (szóköz, pontosvessző, zárójel...) bevitelét követően piros hullám-vonallal aláhúzza a hibás elemeket és a függvény-neveket zöld színnel írja át, sőt bizonyos esetekben, hibaüzenet megjelenítésével, még a szerkesztést is megszakítja. A névkiegészítő listáját nem csak az aktuálisan beírt karakterek, de a kurzor pozíciója is meghatározza. A bővítmény csak azoknak az objektumoknak a nevét jeleníti meg, amelyek a kurzor pozíciójában elfogadhatók.

| f <sub>X</sub> EÖ1:=COU                                                                                                       | $f_X$ EÖ1:=COUNTROWS( CONTAINSROW( D ; { [kategóna] } |    |       |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----|-------|--|--|--|--|--|
| tegória 🔽 osztály 🔽 érték 🔽 Számított oszlop: 1 🔽 Oszlop hozzáadása                                                           |                                                       |    |       |  |  |  |  |  |
| )                                                                                                                             | 1                                                     | 35 | HAMIS |  |  |  |  |  |
| Powe                                                                                                                          | Power Pivot bővítmény az Excel programhoz X           |    |       |  |  |  |  |  |
| A kifejezés nem érvényes, vagy hiányosnak tűnik. Ellenőrizze<br>és javítsa ki a kifejezést. A program elérte a bemenet végét. |                                                       |    |       |  |  |  |  |  |
|                                                                                                                               | 3                                                     | 53 | IGAZ  |  |  |  |  |  |
|                                                                                                                               | 3                                                     | 27 | HAMIS |  |  |  |  |  |
|                                                                                                                               |                                                       |    |       |  |  |  |  |  |

66. ábra hibajelzés a szerkesztés közben és a szerkesztést megszakító panel

A szerkesztőlécen dolgozva használhatjuk a kijelölés (Shift+Jobbra nyíl/Balra nyíl, Shift+Home/End, Ctrl+a) és a vágólap-műveletek (Ctrl+x, Ctrl+c, Ctrl+v) billentyűparancsait. Utóbbi művelet-csoport a szerkesztőléc menüjében is megtalálható, Az összes kijelölése utasítással együtt. A szerkesztőléc magasságát a felhasználó, az Excelben megismert módokon szabályozhatja. Egyedül a dupla kattintásos magasság-állítás nem működik az alsó szegélyen.

A szerkesztés az Esc billentyűvel vagy a képletszerkesztő blokk Mégse nyomógombjával szakítható meg. A képlet kiértékelését az Enter billentyűvel vagy a képletszerkesztő blokk OK gombjával kezdeményezhetjük. Az egyetlen függvényből álló képletek záró zárójelének automatikus bevitele a bővítmény ablakában nem működik, de az argumentum nélküli függvények név-kiegészítős bevitelekor a PowerPivot mindkét zárójelét beírja a képletbe.

|                |                         |                   |                      | 📰 adatok |  |
|----------------|-------------------------|-------------------|----------------------|----------|--|
|                |                         |                   |                      | 📰 szöveg |  |
|                |                         |                   |                      | 💷 szám   |  |
| [ÖSSZEG]       | • <i>f</i> <sub>x</sub> | =[szöveg] + [szár | n]                   | 📰 ÖSSZEG |  |
| 🖌 szöveg 💽     | szám 🔽                  | ÖSSZEG 📣 💌        | Oszlop hozzáadása    |          |  |
| 1 koko         | 4                       | #HIBA             | 🔶 (Ctrl) 🔻           | (        |  |
| 2 lili         | 8                       | #HIBA             | Hiba megjelenítése.  |          |  |
| 3 bubu         | 8                       | #HIBA             | Ugrás az első hibára |          |  |
| 4 fefe         | 3                       | #HIBA             |                      | -6-      |  |
| 5 vivi         | 2                       | #HIBA             |                      |          |  |
| városok megyél | k 🛛 régiók 🚺 🕹 ad       | atok              |                      |          |  |
| Rekord: 11 1   | 1., összesen 7          | + +1              |                      |          |  |

67. ábra kiértékelhetetlen képlet jelölése adat- és kapcsolatnézetben

A kiértékelhetetlen kifejezés #HIBA bejegyzést eredményez a tábla minden rekordjában. A hibát pici rombusz jelöli [1] a tábla fülén, [2] a mezőnévben és [3] a hibás mező aktív bejegyzése mellett. A színes rajzocskára mutatva a bővítmény figyelmeztető üzenetet jelenít meg. A hiba leírását a számított mező tetszőleges cellájára kattintva, a bejegyzés jobb oldalán álló gomb *Hiba megjelenítése…* parancsával jeleníthetjük meg. A menü másik, *Ugrás az első hibára* utasítása a mező első bejegyzését aktiválja.

A képlet szerkesztésének befejezése után a bővítmény rekordonként kiértékeli a kifejezést és az eredményeket a memóriában tárolja. Ha a művelet minden rekordban sikeres, akkor az eredmények megjelennek a mezőben, melynek automatikus neve: Számított mező: <sorszám>. A számított mező létrehozása után a bővítmény a tábla jobb oldalán ismét megjeleníti az Oszlop hozzáadása feliratú oszlopot. A mezőnév menüjéből az automatikus név felhasználói névre cserélhető.

A számított mező másolásakor a bővítmény a képletek eredményét helyezi el az új táblába. A számított mezőt a helyi menü Oszlopok törlése utasításával vagy a Delete billentyűvel törölhetjük.

#### képletek újra számolása

A bővítmény a szokásos beállítások mellett automatikusan újra számolja a képleteket: [1] a táblák frissítése után, [2] objektumok átnevezése után, [3] kapcsolat létrehozása, módosítása és törlése után, [4] új számított objektum létrehozása vagy meglévő számított objektum képletének módosítása után, [5] a PowerPivot-kimutatás szűrőfeltételeinek változása után.

Amennyiben a tábla frissítése során, olyan új adat olvasódna be, amely hibát eredményezne egy képlet újra számolásakor, akkor a bővítmény megtagadja a tábla frissítését!

A felhasználó a Tervezés, Számítások, Számítási beállítások, Kézi számítási mód paranccsal letilthatja az automatikus újraszámítás szolgáltatást. Ebben az esetben a bővítmény csak a Tervezés, Számítások, Számítási beállítások, Azonnali kiszámítás utasításra frissíti a képletek eredményét.



68. ábra az automatikus újraszámítás tiltása

Az automatikus képlet-újraszámítás letiltása csak az aktív PowerPivot munkafüzet képleteinek kezelésére van hatással, a bővítmény általános működését nem befolyásolja. A manuális újraszámítási mód beállítás a munkafüzettel együtt mentődik és a fájl következő megnyitásakor is érvényesül.

#### automatikus összesítés

Amikor a kimutatás értékek területére mezőt helyezünk, akkor közvetve egy képletet hozunk létre: STATISZTIKAI FÜGGVÉNY(<mezőnév>). Ezt a képletet értékeli ki a program a sor és oszlopmezők tételei által meghatározott adatcsoportokon. A PowerPivot-kimutatás-modulja lehetőséget biztosít, olyan statisztikai objektum létrehozására is, amelynek képletét a felhasználó állítja össze. A két objektum funkciója azonos, de nem vehetjük őket egy kalap alá, mert néhány tulajdonságuk különböző. Ezért az előbbit nevezzük automatikus-, az utóbbit egyéni összesítésnek.

A bővítmény a két objektumot, hol megkülönböztetés nélkül mértéknek, hol megkülönböztetve implicit- és explicit mértéknek, vagy mértéknek és egyéni összesítésnek nevezi. Mi ragaszkodjunk a saját fogalmainkhoz, mert ez a megértés alapfeltétele!

Tehát automatikus összesítés az elemzendő mező az értékek kimutatás-területre helyezésével hozható létre. A megjelenített statisztikai érték [1] egész szám, tizedes tört és pénznem adattípusú mező esetén a bejegyzések összege, [2] szöveg, logikai és dátum adattípusú mező esetén a bejegyzések darabszáma.

Ettől eltérő statisztikai értéket az értékek kimutatás-területen álló mező menüjének Értékmező beállításai..., Értékösszegzési szempont, Értékmező összegzésének alapja listából választhatunk. A lista egyetlen újdonsága az Eltérők darabszáma, amely a mező bejegyzéseinek darabszáma, az ismétlődések nélkül. Vagy másként fogalmazva, az egyedi bejegyzések darabszáma.

Az automatikus összesítés nevét a bővítmény adja, amely a statisztikai érték- és a mező nevéből áll. A lista felett álló, Egyéni név vezérlővel a felhasználó egy második nevet is megadhat, de ez a név csak a szülő-kimutatásban és a kimutatás értékek területén lesz megjelenítve.

| stat. érték neve   | függvény      | generált név                             |
|--------------------|---------------|------------------------------------------|
| Összeg             | SUM           | Összeg - <mezőnév></mezőnév>             |
| Darab              | COUNTA        | Elemszám - <mezőnév></mezőnév>           |
| Átlag              | AVERAGE       | Átlag - <mezőnév></mezőnév>              |
| Maximum            | MAX           | Maximum - <mezőnév></mezőnév>            |
| Minimum            | MIN           | Minimum - <mezőnév></mezőnév>            |
| Szórás             | STDEV.S       | Szórás - <mezőnév></mezőnév>             |
| Szórásp            | STDEV.P       | Sokasági szórás - <mezőnév></mezőnév>    |
| Var                | VAR.S         | Variancia - <mezőnév></mezőnév>          |
| Varp               | VAR.P         | Sokasági variancia - <mezőnév></mezőnév> |
| Eltérők darabszáma | DISTINCTCOUNT | Eltérők darabszáma - <mezőnév></mezőnév> |

<sup>69.</sup> ábra automatikus összesítések

Mint, azt már az előző fejezetben említettem, a bővítmény adatnézetben a számítási területen is megjeleníti az összesítéseket. A szokásos beállítások mellett azonban csak az egyéni összesítéseket látjuk. Ezért először a PowerPivot ablak "Fájl" menüjéből a Váltás speciális módra utasítással jelenítsük meg a szalag Speciális lapját, majd adjuk ki róla az Implicit mértékek megjelenítése parancsot.

Adatnézetben az összesítések statisztikai értékei a teljes táblázatra, illetve szűrés esetén a szelektált rekord-halmazra vonatkoznak. Az automatikus összesítések jobb oldalán íves-nyilas szimbólum áll. A létrehozott automatikus összegzés szuverén objektum, az elemzett mező táblájában tárolódik és szülő-kimutatásának törlése után is elérhető marad.

| [5 | számla] 👻 🗙 🖌 $f_{\!x}$ | ='                                                                                                                 |                       |               |
|----|-------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------|---------------|
| 1  | rendszám                | 'autók'                                                                                                            |                       | izből 💌       |
| 1  | JAF-794                 | budapesti lakasok                                                                                                  |                       | 2001. 07. 07, |
| 2  | WYA-469                 | Javitások' [Elemca                                                                                                 | ám - rendszámi        | 2001. 07. 08  |
| 3  | WYA-471                 | S 'javítások'[Eltérők                                                                                              | darabszáma – rendszár | 2001. 07. 14. |
| 4  | JAF-796                 | szervizek'                                                                                                         |                       | 2001. 07. 26. |
| 5  | WYA-467                 |                                                                                                                    | 2001. 07. 21.         | 2001. 07. 24  |
| 6  | SBA-444                 |                                                                                                                    | 2001. 07. 21.         | 2001. 07. 31  |
|    | Elemszám - rendszán     | n: 2652 🧳                                                                                                          |                       |               |
|    | Eltérők darabszáma -    | - rendszám: 178 🛛 🛷                                                                                                |                       |               |
|    |                         | $\sim$                                                                                                             |                       |               |
|    |                         | javítások<br>irendszám<br>szervizbe<br>szervizből<br>számla<br>sajáthibás<br>szerviz<br>fźz Elemszám - rendszáma – | rendszám 🕹            |               |

70. ábra

az automatikus összesítés a számítási területen, a névkiegészítőben és kapcsolatnézetben

A mező törlése természetesen együtt jár az őt elemző automatikus összesítések törlésével. A számítási területen álló automatikus összesítést a menüjéből kiadott utasítással vagy a *Delete* billentyűvel törölhetjük. A törlés a kimutatásból is eltávolítja az összesítést.

Gyakran elemzett, numerikus mezők szokásos statisztikai műveletét (összeadás) a felhasználó módosíthatja: a bővítmény ablakában jelöljük ki a mezőt, majd a Speciális, Összegzés szempontja listából válasszuk ki az értékek területre helyezéskor, automatikusan megjelenítendő statisztikai értéket!

#### egyéni összesítés

Az egyéni összesítés egy felhasználói képleten alapuló, statisztikai objektum, amely az értékek kimutatás-területen áll. Képletét a felhasználó hozza létre. A mezőlistán és a névkiegészítőben megjelenő univerzális név mellett lehetőségünk van egy lokális név használatára is, amely csak az adott kimutatásban és a kimutatás mezőlistájának értékek területén jelenik majd meg.

Az egyéni összesítés képletét a bővítmény a felhasználó által kiválasztott táblában tárolja és ennek a táblának a számítási területén is megjeleníti: <egyéni összesítés neve><kettőspont><szóköz> <érték a teljes táblára vonatkozóan>. Az egyéni összesítés képletét egy másik egyéni összesítés képletében az univerzális nevével szerepeltethetjük: '<táblanév>'[<egyéni összesítés neve>].

Egyéni összesítést létrehozhatunk a bővítmény ablakában, adatnézetben vagy az Excel ablakában, egy PowerPivot-kimutatás készítése közben.

Lássunk egy példát! A "budapesti lakások" táblában meg szeretném határozni a budapesti lakások átlagos négyzetméter-árát, tízezer forint pontossággal. Az egyéni összesítést adatnézetben hozom létre.

Először kiválasztom az objektum tárolására szánt táblát: "budapesti lakások", kattintok a számítási területen, majd egérrel vagy az F2 billentyűvel elhelyezem a kurzort a szerkesztőlécen. A deklaráció szintaktikája: <univerzális név><kettőspont><egyenlőségjel><képlet>. Tehát "átlag nm ár" :=ROUND( SUM ( [ár] ) / SUM( [alapterület] ) ; -4 ). A képletekben szereplő ROUND függvény funkciója és szintaktikája azonos a program KEREKÍTÉS függvényével. A DAX SUM függvénye azonban már különbözik az Excel SZUM függvényétől: csak egyetlen argumentumot határozhatunk meg és ez csak egy mezőnév lehet.



71. ábra az egyéni összesítés a számítási területen, a névkiegészítőben és kapcsolatnézetben

A szerkesztés befejezése után a cellában megjelenik az egyéni összesítés értéke a teljes táblára vonatkozóan. A statisztikai érték formátumát nem csak a szalagon, de az objektum menüjéből is megadhatjuk. Ez a beállítás természetesen a kimutatásban is érvényesül majd. Az egyéni összesítés menüje tartalmazza még a törlés, a leírás megadására szolgáló és az objektum megjelenítését tiltó parancsot. Az adatnézetben törölt egyéni összesítés a kimutatásból is törlődik.

A Kezdőlap, Számítások, AutoSzum lista utasításaival az aktuális mezőt elemezhetjük a leggyakoribb statisztikai függvényekkel. Az automatikusan létrehozott képlet, az automatikus nevet is beleértve, szerkeszthető és így egy bonyolultabb egyéni összesítés alapja lehet.

Foglaljuk össze, az utolsó két ábra alapján, a két összesítés-típus megjelenítési sajátosságait! [1] Az automatikus összesítést elsősorban a nevéről ismerhetjük fel. [2] Adatnézetben a két típust az automatikus összesítést után álló kétirányú íves nyilacska különbözteti meg. [3] Ezt a picike ábrát a bővítmény kapcsolatnézetben is megjeleníti az automatikus összesítés neve után. [4] A névkiegészítőben mindkét típust a görög szumma ( $\Sigma$ ) jelöli. [5] A PowerPivot mezőlistán csak az egyéni összesítések jelennek meg. A felsorolás tanulsága: ne adjunk az automatikus összesítés nevéhez hasonlító nevet az egyéni összesítésnek, mert ez esetleg zavart okozhat a névkiegészítő használatakor.

Példánkat folytatva, kimutatással kell meghatározzuk az egyes kerületek átlagos négyzetméterárának eltérését a budapesti átlagtól, tízezer forint pontosággal. A bővítmény ablakában adjuk ki a *Kezdőlap, Kimutatás* utasítást, majd a megjelenő panel segítségével, határozzuk meg az objektum helyét. Deklaráljuk a két sormezőt a mezőlistán: "városrész" és "kerület", majd jelenítsük meg az egyéni összesítés szerkesztésére szolgáló parancstáblát a PowerPivot, Számítások, Mértékek, Új mérték... utasítással.

Először a tárolásra szánt táblát kell kiválasztanunk: "budapesti lakások". Felülről lefelé haladva a következő mező a név megadására szolgál: "eltérés a bp-i átlagtól". A Leírás mezőben megjegyzést fűzhetünk az objektumhoz. A Képlet mező az egyéni összesítés képletének összeállítására szolgál. Függvény és objektumnevek bevitelekor itt is rendelkezésünkre áll a névkiegészítő.

A mező fölött álló fx feliratú nyomógombbal a Függvény beszúrása panelt jeleníthetjük meg. A parancstáblán, felülről lefelé haladva, először a függvény-kategoriák felsorolását találjuk, majd ezt követi a kategoriába tartozó függvények listája. A bővítmény a lista alatt megjeleníti a kiválasztott függvény argumentumlistáját és leírását is. Utóbbi azonos a névkiegészítőben olvasható ismertetővel. A függvényt az OK gombbal helyezhetjük el a képletben.

| Mérték                            |                                                                                                                               |                                         |                       | ?        | $\times$ |  |  |  |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------|----------|----------|--|--|--|
| Táblázat neve:                    | budapesti lakáso                                                                                                              | ok .                                    |                       |          | ~        |  |  |  |
| Mérték neve:                      | eltérés a bp-i átla                                                                                                           | agtól                                   |                       |          |          |  |  |  |
| Leírás:                           | tízezer forint pon                                                                                                            | tosággal                                |                       |          |          |  |  |  |
| Képlet: <i>f</i> <sub>x</sub>     | Képlet ellenőrzé                                                                                                              | se                                      |                       |          |          |  |  |  |
| ='budapesti laká<br>SUMX(ALL( 'bu | sok'[átlag nm ár] ·<br>dapesti lakások' )                                                                                     | ROUND(SUMX(ALL(bu<br>;[alapterület]);-4 | udapesti lakások' ) ; | [ár] ) / |          |  |  |  |
| A kifejezés<br>A program          | A kifejezés nem érvényes, vagy hiányosnak tűnik. Ellenőrizze és javítsa ki a kifejezést.<br>A program elérte a bemenet végét. |                                         |                       |          |          |  |  |  |
| Formázási beáll                   | ítások                                                                                                                        |                                         |                       |          |          |  |  |  |
| Kategória:                        |                                                                                                                               |                                         |                       |          |          |  |  |  |
| Általános<br>Szám                 |                                                                                                                               | Szimbólum:                              | HUF                   |          | ~        |  |  |  |
| Pénznem                           |                                                                                                                               | Tizedeshelyek:                          | 0 🜲                   |          |          |  |  |  |
| IGAZ/HAMIS                        |                                                                                                                               | Ezres csoportosítás                     | ()                    |          |          |  |  |  |
|                                   |                                                                                                                               |                                         | ОК                    | Mégse    | е .:     |  |  |  |

72. ábra az egyéni összesítés szerkesztésére szolgáló parancstábla

Az "eltérés a bp-i átlagtól" értéke a vizsgált terület lakásainak átlagos négyzetméter-ára és a budapesti átlagos négyzetméter-ár különbsége: ='budapesti lakások'[átlag nm ár] - ROUND( SUMX ( ALL ( 'budapesti lakások'); [ár] ) / SUMX( ALL('budapesti lakások'); [alapterület] ); -4 ).

A képletekben szereplő SUMX függvénynek nincs a programban megfelelője. Az első argumentumával meghatározott tábla minden rekordjában kiértékeli a második argumentumával meghatározott kifejezést, majd az eredményeket összeadja. Az ALL függvény szintén a DAX specialitása. Az argumentumával meghatározott teljes táblát, vagy egy mező összes bejegyzését adja eredményül, tekintet nélkül a kimutatás elrendezésére és szűrőire. Az "eltérés a bp-i átlagtól" képlete nem tartalmazza a lakások átlagos négyzetméter-árának kiszámítási módját, hanem szerepelteti az ezt az értéket eredményező "átlag nm ár"-t.

A szerkesztés befejeztével a Képlet ellenőrzése parancsgombbal kérhetjük a képlet ellenőrzését. Hiba esetén a panel egy újabb területtel egészül ki, amely az ellenőrzés eredményének leírását tartalmazza.

A panel Formázási beállítások területén álló vezérlőkkel a statisztikai érték adattípusát és megjelenítési formáját adhatjuk meg.

A létrehozást követően az egyéni összesítés megjelenik a mezőlistán, a gazda-tábla mezői után, valamint a kimutatás értékek területén.

Az egyéni összesítések módosítására és törlésére szolgáló parancstáblát a PowerPivot, Számítások, Mértékek, Mértékek kezelése... utasítással jeleníthetjük meg.

### szűrők a DAX képletben

A DAX-ban nincs tartomány-hivatkozás, de a műveletek hatókörét a képletben deklarált feltételekkel határozhatjuk meg. Ismerkedjünk meg ezzel a lehetőséggel egy példán keresztül! Az "üzletkötők" tábla egy vállalat ügynökeinek adatait tartalmazza. A cégnek budapesti kirendeltségein kívül számos nagyvárosban is van üzlete. Az üzletkötők négy kategoriába vannak sorolva: A, B, C és D. A tábla további mezői az üzletkötők belépési dátumát, a 2017-es és a 2018-as kötéseik összegét valamint havi fizetésüket tartalmazza.

|    | üzletkötő 🗾 🔽      | kirendelt | tség 🔽           | kategória 💌   | belépett 🔽    | bevétel 2017 🔽         | bevétel 2018 💌 | fizetés 🔽   |
|----|--------------------|-----------|------------------|---------------|---------------|------------------------|----------------|-------------|
| 1  | Abonyi Emőke       | Debrecer  | ı                | D             | 2010. 07. 15. | 3 270 000 HUF          | 5 646 000 HUF  | 290 000 HUF |
| 2  | Adorján Sebestény  | Budapest  | t IV. kerület    | D             | 2011. 12. 28. | 3 958 000 HUF          | 3 596 000 HUF  | 605 000 HUF |
| 3  | Agócs Aranka       | Szombath  | nely             | D             | 2014. 07. 08. | 4 378 000 HUF          | 3 532 000 HUF  | 250 000 HUF |
| 4  | Almási Jolán       | Budapest  | t XIV. kerület   | D             | 2018. 12. 28. | 5 367 000 HUF          | 5 192 000 HUF  | 395 000 HUF |
| 5  | Arató Pál          | Budapest  | t XVIII. kerület | D             | 2011. 07. 07. | 3 849 000 HUF          | 6 477 000 HUF  | 390 000 HUF |
| 6  | Asolti Kriszta     | Szombath  | nely             | D             | 2011. 04. 18. | 5 572 000 HUF          | 5 166 000 HUF  | 290 000 HUF |
| 7  | Bagi Lídia         | Budapest  | t X. kerület     | D             | 2012. 06. 06. | 4 060 000 HUF          | 3 943 000 HUF  | 380 000 HUF |
| 8  | Bakonyi Aurél      | Budapest  | t XIV. kerület   | D             | 2009. 05. 05. | 4 748 000 HUF          | 4 495 000 HUF  | 385 000 HUF |
| 9  | Balla Vince        | Budapest  | t XIII. kerület  | D             | 2011. 01. 16. | 4 337 000 HUF          | 5 444 000 HUF  | 525 000 HUF |
| 10 | Beke havi bértömeg |           | kategória 🚽      | T             | )18. 10. 06.  | 6 061 000 HUF          | 6 212 000 HUF  | 330-000 HUF |
| 11 | Benk kirendeltség  | ज्ञ       | A                | в             | 18 01 30.     | <b>⊿ Ei üzletköt</b> ő | ik             | 000 HUE     |
|    | Budapest II. ke    | rület     | 645 000 HU       | F 615 000 H   | UF            | 🗌 üzletk               | ötő            |             |
|    | Budapest III. k    | erület    | 590 000 HU       | F 655 000 H   | UF            | ✓ kirend               | leltség        | T           |
|    | Budapest IV. k     | erület    | 1 650 000 HU     | F 1 285 000 H | UF            |                        | ória .         | -           |
|    | Budapest VIII.     | kerület   | 565 000 HU       | F 790 000 H   | UF            |                        | ona            |             |
|    | Budapest X. ke     | rület     | 320 000 HU       | F 550 000 H   | UF            | 🔄 belépe               | ett            |             |
|    | Budapest XI. k     | erület    | 680 000 HU       | F 990 000 H   | UF            | bevéte                 | el 2017        |             |
|    | Budapest XIII.     | kerület   | 1 185 000 HU     | F 320 000 H   | UF            |                        | 1 2019         |             |
|    | Budapest XIV.      | kerület   | 375 000 HU       | F 1 005 000 H | UF            |                        | 12010          |             |
|    | Budapest XV. k     | erület    | 1 005 000 HU     | F 440 000 H   | UF            | fizetés                |                |             |
|    | Budapest XVIII     | . kerület |                  | 575 000 H     | UF            | ✓ f <sub>X</sub> har   | vi bértömeg    |             |
|    | Budapest XXI.      | kerület   | 625 000 HU       | F 1 170 000 H | UF            |                        |                |             |

73. ábra a tábla, a kimutatás és a mezőlista

A "havi bértömeg" egyéni összesítés a legalább három éve a vállalatnál dolgozó és emelkedő éves árbevételt produkáló üzletkötők havi bérét összesíti.



74. ábra a "havi bértömeg" egyéni összesítés képlete

A SUMX DAX függvényt már ismerjük. Az első argumentumában álló FILTER függvény egy tábla feltételekkel kiválasztott rekordjait adja eredményül. Első argumentuma a táblát, második a feltételeket határozza meg. A képletben szereplő QUOTIENT és a TODAY függvények működése és szintaktikája megegyezik a program KVÓCIENS és MA függvényeivel.

A képlet tehát a "fizetés" mező bejegyzéseit adja össze. A bejegyzések egy részét a képlet és a kimutatás szűrői kizárják a vizsgálatból, az összeadandó bejegyzés-csoportokat pedig a kimutatás felépítése határozza meg. Tehát a kimutatás azoknak az üzletkötőknek a bérét adja össze, akik már legalább három éve a vállalatnál dolgoznak [képlet szűrője], emelkedő árbevételt produkáltak [képlet szűrője], valamelyik budapesti kirendeltségen dolgoznak [kimutatás szűrője] és A vagy B kategoriásak [kimutatás szűrője]. A kimutatás a béreket kirendeltségek és azon belül, kategoriánként adja össze [kimutatás szerkezete].

#### mezőhívatkozások

A relatív-, az abszolút és a vegyes hivatkozás a cella- és tartomány azonosítók értelmezésének három lehetséges módja a programban. Most ismerkedjünk meg a bővítmény hivatkozásaival, azaz a mezőnevek értelmezési módjaival!

| 1 | dátum 🗾       | bevétel 🗾 | HÁNYAD 🔽 | GÖNGYÖLÍTVE 💽 |
|---|---------------|-----------|----------|---------------|
| 1 | 2016. 01. 01. | 10        | 1,7%     | 10            |
| 2 | 2016. 02. 01. | 60        | 10,3%    | 70            |
| 3 | 2016. 03. 01. | 90        | 15,5%    | 160           |
| 4 | 2016. 04. 01. | 10        | 1,7%     | 170           |
| 5 | 2016. 05. 01. | 80        | 13,8%    | 250           |
| 6 | 2016_06.01.   | 30        | 5.2%     | 280           |

<sup>75.</sup> ábra a "bevételek" tábla

A fenti ábrán látható tábla egy szervezet havi bevételeit tárolja, milliós nagyságrendben. A dátumok a rekordok rögzítésének idejét mutatják. A tábla további két származtatott mezője az adott rekord bevétele és az összes bevétel arányát számolja ki, illetve a bevételeket göngyölíti.

A HÁNYAD számított mező képlete: ='bevételek'[bevétel] / SUM( 'bevételek'[bevétel] ). Tehát az adott rekord bevétele és a táblában tárolt összes bevétel hányadosa. Egyszerű képlet, de azért elgondolkodtató: a benne szereplő "[bevétel]" karakterlánc első előfordulásában a vizsgált rekord bevételét, tehát egyetlen bejegyzést, második előfordulásában a "bevétel" mező összes bejegyzését jelenti. A mezőhivatkozás értelmezésének módosulását nyilvánvalóan a SUM függvény okozta.

A második számított mező, ahogy az ábrán látjuk, a bevételeket göngyölíti. Képlete kicsit bonyolultabb, mint az előbbi: = SUMX(FILTER('bevételek'; [dátum] <= EARLIER([dátum])); [bevétel]). A SUMX függvény tábla argumentumát a FILTER függvény szolgáltatja. Ennek a virtuális táblának a "bevétel" mezőjében álló bejegyzéseket adja össze. A FILTER függvény első argumentuma a "bevételek" tábla, amelynek rekordjai közül válogatja le azokat, amelyek megfelelnek a második argumentumában megfogalmazott feltételnek.



76. ábra a "bevételek" tábla számított mezőinek képlete: HÁNYAD, GÖNGYÖLÍTVE

Most már csak a feltétel, [dátum] <= EARLIER ( [dátum] ), két "[dátum]" hivatkozásának értelmezése vár megfejtésre. Ennek érdekében tegyünk egy kis kitérőt és nézzünk egy másik példát az EARLIER függvény működésére.

| J. | betűk 💽 | számok 💽 | ÖSSZEG 🛛 💌 |
|----|---------|----------|------------|
| 1  | a       | 4        | 20         |
| 2  | b       | 2        | 10         |
| 3  | c       | 5        | 25         |
| 4  | d       | 1        | 5          |
| 5  | e       | 3        | 15         |



Az ÖSSZEG számított mező képlete: =SUMX (karakterek; EARLIER ([számok])). Az eredményeket vizsgálva, azt látjuk, hogy minden rekordban a "számok" bejegyzésének ötszörösét kaptuk. A tábla

öt rekordot tartalmaz. Az első rekord képletének kiértékelésekor a bővítmény elhelyezte a feldolgozás alatt álló rekord "számok" bejegyzését minden rekordban, majd az öt darab négyest összeadta. A második rekord képletének kiértékelésekor a bővítmény elhelyezte a feldolgozás alatt álló rekord "számok" bejegyzését minden rekordban, majd az öt darab kettest összeadta. És így tovább. Az EARLIER( <mezőnév> ) kifejezés, tehát a kiértékelés alatt álló rekord mezőbejegyzését jelenti.

Visszatérve eredeti példánkhoz, azt látjuk, hogy az összeadandó bevételek folyamatosan növekvő halmazát a kronologikusan álló dátumok biztosítják: – Válogasd le azokat a rekordokat, amelyek dátuma azonos vagy korábbi az én dátumomnál! – utasítaná a bővítményt az éppen kiértékelés alatt álló rekord. Ez a tábla rekordszámával azonos számú összehasonlítás-műveletet jelent minden egyes rekord képletének feldolgozásakor. Összefoglalva: az EARLIER függvény argumentumaként álló "[dátum]" a képletet tartalmazó rekord "dátum" mezőjének bejegyzése, az első "[dátum]" hivatkozás pedig a tábla összes dátum bejegyzését jelenti, de nem úgy, mint az első képlet SUM( [bevételek] ) esetében az elemek összességét, hanem minden egyes bejegyzést külön-külön.

# **PowerPivot-kimutatás**

#### a bővítmény kimutatás-modulja

A bővítmény kimutatás-modulja több szolgáltatásában eltér a hagyományos kimutatástól. Ezért célszerű az elnevezésben is megkülönböztetni őket. Tehát a bővítmény ablakának *Kezdőlap, Kimuta*tás parancsával létrehozott objektum a PowerPivot-kimutatás.

Mivel a PowerPivot-kimutatás mindig a teljes "adatbázist" vizsgálja, ezért a létrehozás-parancs kiadása után csak az új kimutatás helyét kell meghatároznunk a *Kimutatás létrehozása* panelon. A *Létező munkalapon* lehetőséget választva, először a *Hely* mező után álló ikonra kell kattintani, majd a *Tartomány* (Sic!) *kiválasztása* (Range Selection) panel megjelenítése után kattintással határozhatjuk meg a létrehozandó kimutatás bal felső celláját.

A kimutatás-terület és a mezőlista megjelenítése jelzi, hogy a bővítmény létrehozta a memóriában az objektum kezeléséhez szükséges adatszerkezetet. A bővítménynek a szalagon nincs külön kimutatás-lapja. A folyamatosan látható *PowerPivot-* és az aktív kimutatás mellet ideiglenesen megjelenített *Kimutatáseszközök, Elemzés és Tervezés* lapok tartalmazzák a PowerPivot-kimutatáshoz kapcsolódó utasításokat, amelyek néhány apróbb részletben különböznek csak a megszokott felülettől.

A bővítmény a táblák frissítését követően az elemzésükre létrehozott kimutatásokat automatikusan frissíti.

PowerPivot-kimutatás beszúrását a program-ablakból is kezdeményezhetjük a Beszúrás, Táblázatok, Kimutatás utasítással. A megjelenő Kimutatás létrehozása paranctáblán A munkafüzet adatmodelljének használata lehetőséget kell választanunk, majd a panel vezérlőivel meg kell határoznunk a kimutatás helyét.

#### a PowerPivot-kimutatás segédablaka

A Kimutatásmezők feliratú segédablakot csak aktív PowerPivot-kimutatás esetén látjuk. A panel megjelenítése illetve elrejtése a Kimutatáseszközök, Elemzés, Megjelenítés, Mezőlista paranccsal történik.

A segédablak neve alatt álló Aktív és Mind vezérlőkkel a kurzor által kijelölt kimutatás táblái (Aktív), illetve a PowerPivot adatbázis összes táblájának és a munkafüzet összes adatbázis-táblázatának (Mind) megjelenítése között választhatunk. A táblák nem a bővítmény ablakában elfoglalt helyük sorrendjében, hanem a nevük alapján, ABC sorrendben követik egymást.

A kapcsolatokkal egyesített táblák csoportot képeznek a mezőlistán. Az egy csoportot alkotó táblákat a bővítmény egymás alatt jeleníti meg a mezőlistán és vízszintes vonallal választja el más csoportoktól illetve önálló tábláktól.

| Kimutatásmezők                                       | - ×        |
|------------------------------------------------------|------------|
| Aktívak Mind                                         |            |
| Válassza ki a jelentésbe felvenni<br>kívánt mezőket: | ∯ <b>▼</b> |
| Keresés                                              | P          |
| ▷ 🗄 adatok                                           |            |
| ▷ 🌐 egyik                                            |            |
| ▷ 🏢 másik                                            |            |
| ▷ 🌐 harmadik                                         |            |
| $\sim$ $\sim$                                        |            |

78. ábra táblák a segédablakban

A képen látható tábla-szimbólumok jelentése a következő. [1] Hengeres: importált vagy vágólappal létrehozott tábla, [2] henger nélkül: adatbázis-táblázatból létrehozott tábla, [3] felső csík nélkül: adatbázis-táblázat, amelyből nem készült tábla.

A mezőket a táblanevek előtt álló pici háromszöggel jeleníthetjük meg. Sorredjük azonos a táblában elfoglalt pozíciójukkal. Ezt a megjelenítést a segédablak, fogaskerekes szimbólummal jelölt, menüjének Adatforrás sorrendje szerinti rendezés beállítása biztosítja. A Rendezés A - Z utasítás ezt az elrendezést alakítja át ABC sorrendűre.

Az összes mező megjelenítését illetve elrejtését biztosító parancsot szintén a segédablak menüjében találjuk: Az összes kibontása/összecsukása.

Mikor a PowerPivot-kimutatás értékek területére olyan mezőt helyezünk, amely nem a kimutatás sor- vagy oszlopmezőinek tábláiból származik, akkor a bővítmény a mezőlistán jeleníti meg a kapcsolatok hiányára utaló információt. Talán még emlékszünk rá, hogy ilyen esetben elindíthatjuk a bővítmény automatikus-kapcsolat modulját.

A mezőket nem csak a táblanevek előtti álló, más alkalmazásokból már ismert, pici háromszöggel, hanem a táblanévre duplán kattintva is megjeleníthetjük/elrejthetjük.

| z |
|---|
|   |
|   |
|   |
|   |
|   |

79. ábra a mezőnév menüjének vezérlője piros nyíllal jelölve és az egér jobb billentyűvel megjeleníthető helyi menü

A mezőnevek menüje a rendezés és a szűrés eszközeit tartalmazza, míg helyi menüjük utasításaival a mező kimutatásban elfoglalt szerepét határozhatjuk meg. Az utolsó két parancs, *Hozzáadás szeletelőként* és *Hozzáadás idősorként*, külső szűrőt hoz létre a mező egyedi bejegyzéseivel. Utóbbi lehetőség természetesen csak dátum-mező esetén érhető el.

Külső szűrőt létrehozhatunk a program utasításával is: Kimutatáseszközök, Elemzés, Szűrés, Szeletelő beszúrása/Idősor beszúrása paranccsal is.

A mezőlista alján álló, *Elrendezésfrissítés elhalasztása* feliratú vezérlővel kikapcsolhatjuk a kimutatás automatikus frissítését. Ebben az üzemmódban a jelölőnégyzettel egy sorban álló *Frissítés* parancsgombbal kérhetjük a kimutatás aktualizálását.

#### kimutatás és kimutatásdiagram létrehozása

A bővítmény ablakának *Kezdőlap, Kimutatás* parancslistájának elemeivel tudunk kimutatást vagy kimutatásdiagramot létrehozni. Vegyünk sorra a lehetőségeinket.

[1] Kimutatás: PowerPivot-kimutatás létrehozása, a felhasználó által megadott helyen.

[2] *Kimutatásdiagram*: kimutatásdiagram létrehozása, a felhasználó által meghatározott helyen. A mezőlista alján álló objektum-területek funkciói és feliratai a következők. Csak szűrő-feladatot ellátó mezők területe: Szűrők. A függőleges, vagyis az értéktengely osztásait meghatározó mező területe: Jelmagyarázat (adatsor). A vízszintes, azaz a kategoria tengely osztásait meghatározó mező területe: Tengely (kategoriák). A statisztikai mező területe: Értékek.

[3, 4] Diagram és táblázat (vízszintesen), Diagram és táblázat (függőlegesen): létrehozza a nevében szereplő objektumokat, a nevében szereplő sorrendben és elrendezésben, a felhasználó által meghatározott helyen. A két objektum független egymástól. Az egyik objektum szelektálására létrehozott külső szűrő csatolható a másik objektumhoz. Szinkronizált működésű kimutatás-kimutatásdiagram párost két lépésben tudunk létrehozni: először elkészítjük a PowerPivot-kimutatást, majd a beszúrjuk a diagramot a Kimutatáseszközök, Elemzés, Eszközök, Kimutatásdiagram utasítással.

[5, 6] Két diagram (vízszintesen), Két diagram (függőlegesen): két kimutatásdiagram létrehozása a nevében szereplő elrendezésben, a felhasználó által meghatározott helyen. Az egyik objektum szűrője csatolható a másik objektumhoz.

[7] Négy diagram: négy kimutatásdiagram létrehozása, a felhasználó által meghatározott helyen. Az egyik objektum külső szűrője csatolható a többi objektumhoz.

[8] Egybesimított kimutatás: egyetlen PowerPivot-kimutatás létrehozása, meghatározott formai elemekkel, a felhasználó által meghatározott helyen.

| Elemszám - név | Oszlopcímkék 👕 |                  |           |           |             |        |    |
|----------------|----------------|------------------|-----------|-----------|-------------|--------|----|
| Sorcímkék 👘    | beosztott      | felsővezető veze | ető Végi  | összeg    |             |        |    |
| 🗏 Baja         | 131            | 6                | 10        | 147       |             |        |    |
| pénzügy        | 26             | 2                | 2         | 30        |             |        |    |
| szállítás      | 59             | 2                | 4         | 65        |             |        |    |
| tervezés       | 46             | 2                | 4         | 52        |             |        |    |
| 🗏 Ócsa         | 115            | 6                | 10        | 131       |             |        |    |
| pénzügy        | 23             | 2                | 2         | 27        |             |        |    |
| szállítás      | 43             | Elemszám - név   | <u></u>   | státusz   | . 💌         |        |    |
| tervezés       | 49             | telephely 📑      | osztály 🕋 | beosztott | felsővezető | vezető |    |
| 🖃 Paks         | 130            | Baja             | pénzügy   |           | 26          | 2      | 2  |
| pénzügy        | 26             | Baja             | szállítás |           | 59          | 2      | 4  |
| szállítás      | 47             | Baja             | tervezés  |           | 46          | 2      | 4  |
| tervezés       | 57             | Baja Összeg      |           |           | 131         | 6      | 10 |
| 🗆 Vác          | 105            | Ócsa             | pénzügy   |           | 23          | 2      | 2  |
| pénzügy        | 21             | Ócsa             | szállítás |           | 43          | 2      | 4  |
| szállítás      | 45             | Ócsa             | tervezés  |           | 49          | 2      | 4  |
| tervezés       | 39             | Ócsa Összeg      |           |           | 115         | 6      | 10 |
| Végösszeg      | 481            | Paks             | pénzügy   |           | 26          | 2      | 2  |
|                |                | Paks             | szállítás |           | 47          | 2      | 4  |
|                |                | Paks             | tervezés  |           | 57          | 2      | 4  |
|                |                | Paks Összeg      |           |           | 130         | 6      | 10 |
|                |                | Vác              | pénzügy   |           | 21          | 2      | 2  |
|                |                | Vác              | szállítás |           | 45          | 2      | 4  |
|                |                | Vác              | tervezés  |           | 39          | 2      | 4  |
|                |                | Vác Összeg       |           |           | 105         | 6      | 10 |

80. ábra a "szokásos" és az "egybesimított" megjelenítésű kimutatás

Tehát a parancslista utolsó elemével egy speciális megjelenítésű kimutatást kapunk. Ha beszúrnánk egy kimutatást, akkor a következő beállításokkal alakíthatnánk át "egybesimított" kimutatássá.

Sorok és oszlopok összegzésének kikapcsolása: Kimutatáseszközök, Tervezés, Elrendezés, Végösszegek, Kikapcsolva a sorokban és oszlopokban. Táblázatos megjelenítés bekapcsolása: Kimutatáseszközök, Tervezés, Elrendezés, Kimutatás elrendezése, Megjelenítés táblázatos formában.

Külső sor- illetve oszlopmezői tételeinek kibontás-összecsukás kapcsolóinak elrejtése: Kimutatáseszközök, Elemzés, Megjelenítés, +/- gombok.

Külső sor- illetve oszlopmezők tételneveinek megjelenítése minden sorban: Mezőbeállítások, Elrendezés és nyomtatás, ☑ Tételcímkék ismétlése.

Minden második sor hátterének színezése: Kimutatáseszközök, Tervezés, Kimutatásstílusok beállítása, Sávos sorok. Az utolsó művelet a kimutatásstílus kiválasztása lenne, de az "Egybesimított kimutatás stílus", amellyel a bővítmény formázza az objektumot nem szerepel a választható formátumok között.

#### tételek egyedi sorrendje a kimutatásban

A sor- és oszlopmezők tételei a PowerPivot-kimutatásban is rendezetten, növekvő sorrendben jelennek meg, de az Excel egyéni listáit a bővítmény nem veszi figyelembe. Egyedi sorrendet a Power-Pivot "rendezés más mező alapján" nevű szolgáltatásával határozhatunk meg. A modul működésének lényege, hogy a sor illetve az oszlopmező tételeinek sorrendjét egy másik mező bejegyzéseinek sorrendjével határozzuk meg.



81. ábra rendezendő és rendező mezők

Az ábra két táblájának bal oldali mezőit tervezzük a kimutatás sor- vagy oszlopterületén szerepeltetni. A hét napjainak időrendi megjelenítését az "nap index" mező, a kerületek emelkedő sorszámú megjelenítését a "kerület index" mező bejegyzésein alapuló rendezés biztosítja majd.

A modul parancstábláját adatnézetben, a rendezendő mezőre kattintva, a *Kezdőlap, Rendezés* és szűrés, Rendezés más oszlop alapján utasítással jeleníthetjük meg. A rendezendő mezőt a bővítmény automatikusan kitölti. A rendező mezőt a panel jobb oldalán álló listából kell kiválasztanunk. A rendezendő mező azonos bejegyzéseit tartalmazó rekordokban a rendező mező bejegyzéseinek is azonosnak kell lennie!

| PowerPivot bővítmény az Excel programhoz |                                                                                                                                                                                                                                                                                                                                                           |   |  |  |  |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|
| 8                                        | A(z) kerület nem rendezhető cím szerint, mert a(z) kerület mezőben levő legalább<br>egy értékhez több különböző, cím mezőbeli érték tartozik. Például a [Város] mező<br>rendezhető [Régió] szerint, mert mindegyik városhoz csak egy régió tartozik,<br>de a [Régió] mező nem rendezhető [Város] szerint, mert mindegyik régióhoz<br>több város tartozik. | ) |  |  |  |
| Részletek >> OK                          |                                                                                                                                                                                                                                                                                                                                                           |   |  |  |  |

82. ábra a fenti előírás megsértésekor megjelenő hibaüzenet

A "rendezés más mező alapján" deklaráció a táblában álló rekordok sorrendjét nem befolyásolja. Az egyedi sorrend szerint rendezendő mezők száma nincs korlátozva. A speciális megjelenítést, a mező kiválasztása után, a *Kezdőlap, Rendezés és szűrés, Rendezés más* oszlop alapján, Más oszlop szerinti rendezés kikapcsolása utasítással törölhetjük.

# egyéni nézetek

### fogalmak

Az egyéni nézet a felhasználó által meghatározott táblák meghatározott mezőinek, elnevezett csoportja. A program az egyéni nézetet a munkafüzetbe menti. Az egyéni nézet csak a bővítmény ablakában érvényesül, beolvasását követően a PowerPivot ablakban csak az egyéni nézet tábláit és mezőit látjuk, de a kimutatás mezőlistáján továbbra is a teljes adatbázis a rendelkezésünkre áll. Természetesen az "elrejtés az ügyféleszközök elől" művelettel eltiltott objektumok nélkül. A bővítmény az egyéni nézetet "perspektívának" nevezi. A teljes adatbázist meg "alapértelmezett" perspektívának.

#### egyéni nézetek kezelése

Az egyéni nézetek parancstábláját a Speciális, Perspektívák, Létrehozás és kezelés paranccsal jeleníthetjük meg. A Perspektívák panel bal oldalán, a Mezők felirat alatt a bővítmény hierarchikusan ábrázolja az adatbázis objektumait. A hierarchia csúcsán a teljes adatbázist jelentő, Táblázatok felirat áll. A második logikai szintet a táblanevek foglalják el, végül a harmadik szinten a mezőnevek állnak. A tartalmazott objektumok megjelenítésének szabályozására az első két logikai szint elemei előtt, plusz-mínusz jeles, pici vezérlők állnak, a Microsoft új, szuper minimalista dizájnjával összhangban, keret nélkül.

A Mezők felirat feletti Új perspektíva parancsgombbal kezdeményezhetjük egy új egyéni nézet létrehozását. A bővítmény az utasítás hatására egy jelölőnégyzetes oszlopot jelenít meg, "Új perspektíva: <sorszám>" automatikus névvel. A név természetesen lecserélhető.

| rspektívák                                                                                |                                   |                                        |                                        | ?                                                                                  |   |
|-------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------|----------------------------------------|------------------------------------------------------------------------------------|---|
| łasználjon perspektívákat az<br>ragy üzleti helyzethez definiál<br>Új perspektív <u>a</u> | adatok nézete<br>ják, és a segí   | inek definiálásál<br>tségükkel egysze  | noz. A perspektív<br>erűsíthető a nagy | ákat általában egy adott felhasználói csoportho<br>adathalmazokban való navigáció. | Z |
| Mezők                                                                                     | számlák                           | használók                              | típusok                                |                                                                                    |   |
| - <u>T</u> áblázatok                                                                      |                                   |                                        |                                        |                                                                                    |   |
| + autóhasználat                                                                           |                                   |                                        |                                        |                                                                                    |   |
| + autók                                                                                   |                                   |                                        |                                        |                                                                                    |   |
| + javítások                                                                               |                                   |                                        |                                        |                                                                                    |   |
| - munkatársak                                                                             |                                   |                                        |                                        |                                                                                    |   |
| anyja neve                                                                                |                                   |                                        |                                        |                                                                                    |   |
| belépett                                                                                  |                                   |                                        |                                        |                                                                                    |   |
| kilépett                                                                                  |                                   |                                        |                                        |                                                                                    |   |
| név                                                                                       |                                   | $\checkmark$                           |                                        |                                                                                    |   |
| osztály                                                                                   |                                   | $\checkmark$                           |                                        |                                                                                    |   |
| személyi szám                                                                             |                                   | $\checkmark$                           |                                        |                                                                                    |   |
| születési dátum                                                                           |                                   |                                        |                                        |                                                                                    |   |
| Nincsenek objektumok a kövel<br>használatával kapcsolódik ehh                             | tkező perspekt<br>ez a perspekt í | ívában: "típusok<br>vához, a mezőlista | ". Amikor egy felha<br>a üres lesz.    | asználó az Excel vagy egy másik ügyféleszköz                                       |   |
|                                                                                           |                                   |                                        |                                        | OK Méas                                                                            | e |

83. ábra az egyéni nézetek objektumlistái

A felhasználó a jelölőnégyzetek segítségével állítja össze az objektum-listát. Az adatbázis összes objektumát a Táblázatok sorban álló, az adott tábla összes objektumát a tábla nevének sorában álló négyzettel választhatjuk ki. Az első két logikai szinten álló objektumok jelölőnégyzetében álló négyzet a részleges, tehát a szelektív kiválasztást jelöli.

A bővítmény esetleges üzeneteit a listák alatt, egy erre a célra megjelenített színes téglalapban olvashatjuk. Az egyéni nézetek kezelése az adott lista nevére mutatva megjelenő eszköztár parancsaival történik. A parancsgombok funkciója balról jobbra haladva: [1] a nézet törlése, [2] a nézet átnevezése és [3] másolat készítés a nézetről egy új lista létrehozáshoz. A mentett a nézetek öszszetétele szabadon módosítható. A panel *OK* gombja menti az új listát és a módosításokat.

A nézetek listáját a Speciális lap Perspektívák csoportja tartalmazza. A lista <Alapértelmezett> bejegyzése a teljes adatbázist jeleníti meg.



84. ábra az egyéni nézetek listája az eszköztáron

Összefoglalva, az egyéni nézet és az "elrejtés az ügyféleszközök elől" műveletek funkciója azonos, a megjelenítendő objektumok meghatározása, de míg az előbbi csak a bővítmény ablakában érvényesül, addig az utóbbi a kimutatás mezőkészletét is szűkíti.

# több a többhöz kapcsolat

# fogalmak

Két tábla több a többhöz viszonyáról akkor beszélhetünk, ha a táblák tetszőleges rekordjához a másik tábla több rekordja tartozhat. Ez a logikai kapcsolat a mindennapi életben sem ritka. Gondoljunk csak a színészek és a színdarabok vagy a fordítók és a nyelvek viszonyára! Egy színházban egy színész több színdarabban is játszhat és egy színdarab előadása általában több színészt igényel. Vagy vegyünk egy fordító irodát, egy fordító akár több nyelvet is beszélhet és egy nyelvet több fordító is ismerhet. A több a többhöz viszonyban álló táblák csak egy közbenső tábla segítségével kapcsolhatók össze. Ez a harmadik tábla a kapcsoló tábla.



85. ábra két példa a több a többhöz kapcsolatra

Az ábrán láthatjuk, hogy a kapcsoló tábla nem csak a kapcsoló mezőket, de a logikai viszony egy vagy több tulajdonságát is tárolhatja. Például a felső tábla-csoportban a szerep nevét: egy kiválasztott színész az egyik színdarabban az "apa", a másikban a "szerető". Vagy a nyelvtudás táblában a szint mező: egy fordító az egyik nyelvet "anyanyelvi" szinten beszéli, a másikat inkább csak "érti". A fenti képen azt is megfigyelhetjük, hogy a több a többhöz kapcsolatban a kapcsoló tábla mindkét kapcsolatban a kapcsolat több oldalán áll.

# számított mező több a többhöz kapcsolatban

A fogalmak tisztázásánál használt fordítók példánál maradva, ki szeretnénk számolni az egyes fordítók havi jövedelmét, amely a "fizetés" és a felsőfokon beszélt nyelvek után járó "pótlék" összege. A pótlék mértéke nyelvenként különböző. A számított mező a "fordítók" táblában álljon.



86. ábra a példa két számított mezője: a JÖVEDELEM és a PÓTLÉK

A legegyszerűbb megoldást választjuk: a nyelvtudás táblában létrehozunk egy számított mezőt, amely tartalmazza az adott nyelvtudás után járó esetleges összeget, majd a fordítók tábla számított mezője összeadja az adott fordítóhoz tartozó összegeket.

A nyelvtudás tábla PÓTLÉK mezőjének képlete: =IF([szint] = "felsőfok"; RELATED( nyelvek [pótlék])). A fordító csak akkor jogosult a nyelvpótlékra, ha az adott nyelvet felső szinten beszéli. Ezért az IF függvényt alkalmazzuk, amely csak annyiban tér el a program HA függvényétől, hogy ha a harmadik argumentumát nem adjuk meg, akkor az első argumentum HAMIS értékénél a függvény üres eredményt ad. A nyelvek tábla neve a képletben nincs aposztrófokkal keretezve, mert a név nem tartalmaz szóközt és ékezetes karaktert. Utóbbi kitétel független az operációs rendszer területi beállításaitól.

A fordítók tábla JÖVEDELEM mezőjének képlete: = [fizetés] + CALCULATE( SUM ( 'nyelvtudás' [PÓTLÉK] ) ; 'nyelvtudás'[fordító] = EARLIER( [fordító] )). A CALCULATE függvény a DAX specialitása, az első argumentumával deklarált kifejezést értékeli ki, azokon a rekordokon, amelyeket a további argumentumaival megadott szűrő-feltételekkel kell kiválasztania. A képletben alkalmazott CALCULATE függvény összeadja a nyelvtudás tábla, azon rekordjainak pótlékát, amelyeknek fordítója azonos a vizsgált fordítóval.



87. ábra a PÓTLÉK és a JÖVEDELEM számított mezők képlete

#### összesítések több a többhöz kapcsolatban

Hogy megértsük a több a többhöz kapcsolat kezelését, először nézzünk egy feladatot, amelynek táblái egy a többhöz viszonyban állnak egymással.



88. ábra egy a többhöz viszonyban álló táblák

Hány gyerekük van az egyes férfiaknak? A megoldás egyszerű: a mezőlistán a sorterületen elhelyezzük a férfiak tábla férfi mezőjét, majd a gyerekek tábla gyerek mezőjét az értékek területre húzzuk. A létrehozott Elemszám - gyerek automatikus összesítés értékei adnak választ a kérdésünkre. A lista végén álló tizenkét gyerek apukája nem szerepel a férfiak táblában.



89. ábra a feladat megoldása automatikus összesítéssel

Tehát a bővítmény képes leválogatni az egy a többhöz viszonyban álló táblák összetartozó rekordjait, még akkor is, ha a táblák nincsenek közvetlen kapcsolatban.

Most térjünk vissza a fordítók adatbázis több a többhöz logikai viszonyban álló tábláihoz! A fordító jövedelme a fizetés és a felsőfokú nyelvtudásaiért kapott pótlékok összege. Kimutatással összegezzűk az egyes fordítók pótlékainak összegét.

Kipróbáljuk az előbb bevált módszert: a fordítók tábla fordító mezőjét a sorterületre helyezzük, majd a nyelv tábla pótlék mezőjét az értékek területére húzzuk... De most ez nem jön be. A mezőlista tetején megjelenik a kapcsolatok hiányára utaló figyelmeztetés és minden fordító mellett a nyelvek tábla összes pótlék bejegyzésének összege áll.

| Szükség lehet a táblák köz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ötti kapcsolat | okra.       | ×           |        |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|-------------|--------|--|--|--|
| AUTOMATIKUS FELISMERÉS LÉTREHOZÁS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |             |             |        |  |  |  |
| Keresés                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |             | 0           |        |  |  |  |
| Nereses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | fordító        | -           | Összeg -    | pótlék |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Béres Va       | azul        | 105 000 HUF |        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hajós Er       | 105 000     | HUF         |        |  |  |  |
| ✓ fordito                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hamar E        | 105 000     | HUF         |        |  |  |  |
| fizetés                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Jenei Ág       | 105 000 HUF |             |        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Nemes I        | Magda       | 105 000     | HUF    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Nyéki Zs       | olt         | 105 000     | HUF    |  |  |  |
| ( The such take                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ormai Já       | inos        | 105 000     | HUF    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pajor Re       | Pajor Rezső |             | HUF    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sényi An       | dor         | 105 000     | HUF    |  |  |  |
| ✓ pótlék                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Varga Ki       | nga         | 105 000     | HUF    |  |  |  |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Végössze       | g           | 105 000     | HUF    |  |  |  |
| Image: Provide transmission of the second |                | _           |             |        |  |  |  |

90. ábra az automatikus összesítés eredménye

Tehát több a többhöz kapcsolatban álló táblákban a bővítmény, segítség nélkül, nem tudja meghatározni az összetartozó rekordokat. A megoldás természetesen az egyéni összesítés: "összpótlék". Képlete: =CALCULATE( SUM ( 'nyelvek'[pótlék] ); FILTER( 'nyelvtudás'; [szint] = "felsőfok" )).

| 🔺 🛅 fordítók                      | fordító             | -          | összpótlék |
|-----------------------------------|---------------------|------------|------------|
| ✓ fordító                         | Hajós Emőke         | 15 000 HUF |            |
| fizetés                           | Jenei Ágnes         |            | 10 000 HUF |
| f =============================== | Nemes Magda         | 45 000 HUF |            |
| $\checkmark f_X$ osszpotiek       | Zpotlek Pajor Rezső |            | 30 000 HUF |
|                                   | Sényi Andor         |            | 35 000 HUF |
| E E nyelvek                       | Varga Kinga         | 20 000 HUF |            |
| N III nuch tudác                  | Végösszeg           | 80 000 HUF |            |
| v 🔤 nyelvtudas                    |                     |            |            |
|                                   | <u> </u>            |            |            |

91. ábra a feladat megoldása egyéni összesítéssel

Az egyéni összesítés képletében a CALCULATE függvény második argumentuma a FILTER függvényel képzett, a felsőfokú bejegyzésekre szűrt nyelvtudás tábla, amelynek kapcsolódó rekordjait már meg tudja keresni a bővítmény a nyelvek táblában.

A fentiekből következik, hogy a CALCULATE függvény második és további argumentumai táblák is lehetnek. Ezt a tapasztalatot felhasználhatjuk, ha a több a többhöz kapcsolatban álló táblák öszszes összetartozó rekordjára szükségünk van az összesítéshez. Páldául meg szeretnénk állapítani, hány színdaraban játszanak az egyes színészek.



a "színészek" és "színdarabok", több a többhöz logikai viszonyban álló táblái

Ha az előbb megismert sémát kívánjuk alkalmazni, akkor a "hány darabban" egyéni összesítés így alakul: =CALCULATE( COUNTA( 'színdarabok'[cím] ); FILTER( szerepek ; [cím] = RELATED( 'színdarabok'[cím] ))). Magyarul a FILTER függvénnyel a "szerepek" és a "színdarabok" táblák kapcsolatát deklaráltuk, amelyet az összetartozó rekordok keresésénél a CALCULATE függvénynek használnia kell. Ez a kvázi kapcsolat-meghatározás egyszerűbb szintaktikával is történhet: CALCULATE( COUNTA( 'színdarabok'[cím] ); szerepek ). Tehát elegendő csak a kapcsolótábla nevét megadnunk.

Ha a kapcsolótábla kapcsoló mezői ezt megengedik, más módszert is alkalmazhatunk több a többhöz kapcsolatban álló táblák elemzéséhez. Például: állapítsuk meg a fenti táblacsoportban, [1] hány szerepet formálnak meg és [2] hány színdarabban játszanak az egyes színészek! Tételezzük fel, hogy egy színész egy színdarabban több kisebb szerepet is játszhat.

Az első kérdés megválaszolása egyszerű: helyezzük a színészek tábla név mezőjét a mezőlista sorterületére, majd húzzuk a szerepek tábla szerep mezőjét az értékek területre. Az automatikus összesítés helyes értékeket ad. A második kérdést is megválaszolhatjuk automatikus összesítéssel: a szerepek tábla tartalmazza a színdarabok címét, de ha egy színész egy színdarabban több kisebb szerepet is játszik, akkor a színdarab címe ismétlődni fog. Az egyedi bejegyzéseket a DISTINCTCOUNT függvénnyel számoltathatjuk meg. Tehát a második kérdést is megválaszolhatjuk automatikus ösz-szesítéssel. Ha akarjuk, a megoldásból még az első táblát is kihagyhatjuk: a fordító nevét is a kap-csolótáblából vesszük.

|                |                  | $\sim$                     |                            |
|----------------|------------------|----------------------------|----------------------------|
|                | =                | SOROK                      | Σ ÉRTÉKEK                  |
|                | n                | év 🔻                       | Elemszám - szerep 🔻        |
|                |                  |                            | Eltérők darabszáma – cím 🔻 |
| név 🗠          | Elemszám - szere | p Eltérők darabszáma – cím |                            |
| Csernus Máté   | 3                | 3                          |                            |
| Nógrádi Sára   | 5                | 3                          | EDIGO(TÉG                  |
| Országh Huba   | 2                | 2                          | FRISSITES                  |
| Reményi Ottó   | 5                | 3                          |                            |
| Solymári Ernő  | 3                | 3                          |                            |
| Szamosi Dóra   | 2                | 2                          |                            |
| Szendrő Vera 2 |                  | 2                          |                            |
| Végösszeg      | 22               | 4                          |                            |

93. ábra a feladat megoldása két automatikus összesítéssel

# feltételes formázás a kimutatásban

#### fogalmak

A bővítmény KPI (Key Performance Indicator) szolgáltatása egy ikonkészletes feltételes formázás, amely egyéni összesítések célértékes vagy középértékes vizuális elemzését teszi lehetővé.

A szolgáltatás elnevezése, a magyar verzióban "fő teljesítmény mutató", többszörösen félrevezető. [1] A név azt sugallja, hogy egy független objektumról van szó, ami nem igaz. A rajzi objektum az egyéni összesítés grafikus megjelenítése. [2] A szolgáltatás az egyéni összesítés tárgyára vonatkozóan semmilyen korlátozást nem ír elő, tehát a "teljesítmény" szónak a névben nincs értelme, mert a rajzi megjelenítés kapcsolódhat "nyereséghez", "kihasználtsághoz", bármihez... [3] Egy kimutatásban több egyéni összesítéshez kérhetjük a szolgáltatást és a megjelenített grafikus rendszerek között semmilyen alárendeltségi viszony nincs, így a "fő" szónak sincs semmi értelme. Tehát a mutató nem fő- és nem teljesítmény! Akkor mi? Ikonkészletes feltételes formázás.

A grafikus megjelenítés az egyéni összesítés értéktartományának szakaszokra bontásán és a kiválasztott ikonkészlet elemeinek a szakaszokhoz rendelésén alapszik. A szolgáltatás legfontosabb tulajdonságait a felhasználó határozza meg: [1] ikonkészletet választ, [2] megadja az elemzés típusát, célértékes vagy középértékes vizsgálatot szeretne, [3] megadja a szakaszhatárokat, [4] a célértéket illetve a középértéket, valamint [5] meghatározza az ábrácskák sorrendjét.

A feltételes formázás beállítását követően önállóan elrejthetjük, illetve megjeleníthetjük az egyéni összesítés [1] kiszámolt értékeit, [2] a feltételes formázás ábrácskáit, [3] a feltételes formázás cél- illetve középértékét. A felhasználó által megadott cél- vagy középérték nemcsak konstans lehet, hanem egy másik egyéni összesítés is.

#### a feltételes formázás kezelése

A bővítmény ablakában, adatnézetben, az egyéni összesítést kijelölve, a Kezdőlap, Számítások, KPI létrehozása, vagy az egyéni összesítés helyi menüjében a KPI létrehozása... paranccsal állíthatunk be feltételes formázást. Az egyéni összesítés helyi menüje tartalmazza a feltételes formázás módosításának és törlésének utasításait is. A program-ablak PowerPivot, Számítások, KPI-k listája tartalmazza a feltételes formázás parancsait: Új KPI... és a KPI-k kezelése... parancsokat.

#### célértékes elemzés létrehozása

Az ikonkészletes feltételes formázással általában a vizsgált adathalmaz elemeinek nagyságát kívánjuk szemléltetni. A határértékek és a kategoriákhoz rendelt ábrácskák ismeretében, már egyetlen futó pillantással megállapíthatjuk egy elem hozzávetőleges nagyságát. Minél jobban megközelítik az elemek, az általunk ideálisnak vélt értéket, amit nevezzünk célértéknek, annál elégedettebbek vagyunk. Akkor vagyunk a legboldogabbak, ha némely elem még nagyobb is ennél a határértéknél. Gondoljunk csak árbevételeink nyereség tartalmára.

De van úgy, hogy akkor vagyunk elégedettek, ha minél kisebbek egy adathalmaz elemei. Ilyen lehet például az árbevételeink költség része. Ebben az esetben a határértékek a célértéknél nagyobbak lesznek és az ikonok sorrendje is változhat. A célértékes vizuális elemzés, az ideálisnak vélt érték értelmezésének módja szerint tehát lehet [1] alulról közelítő, "minél nagyobb annál jobb", vagy [2] felülről közelítő, "minél kisebb annál jobb" típusú. Először ismerkedjünk meg az alulról közelítő vizuális elemzés tulajdonságaival egy kéttáblás adatbázis segítségével: diákok - vizsgák. A feladat szempontjából lényeges körülmények: [1] egy diák több tantárgyat hallgat, [2] egy tantárgyból több vizsgát kell abszolválnia, [3] megfelelt a tantárgyi követelménynek az a hallgató, akinek a vizsgákon elért pontszámainak átlaga elérte az abból a tantárgyból elnyerhető maximális pontszámok átlagának hatvan százalékát, [4] kitűnően megfelelt az a hallgató, aki kilencven százalékot ért el. Értékeljük a hallgatók féléves munkáját, tantárgyanként, a megszerzett pontszámaik alapján.



94. ábra a példa két táblája

Az egy oldali tábla, vizsgák, tartalmazza az összes tantárgy összes vizsgáját és az egyes vizsgákon elérhető maximális pontszámot. A két táblát a vizsga azonosítóját tartalmazó mező kapcsolja öszsze. Az adott vizsgán elért pontszámot a diákok táblában találjuk. Az értékelést kimutatás segítségével fogjuk elvégezni. Egyéni összesítéssel megállapítjuk az egyes hallgatók, az adott tantárgy vizsgáin megszerzett pontszámainak átlagát, majd egy három-elemű ikonkészletes-formázással megjelenítjük, hány százaléka ez az érték, a maximális pontszámok átlagának, amelyet szintén egyéni összesítéssel számolunk ki.

A kimutatás sormezői a 'diákok'[név] és a 'vizsgák'[tantárgy] lesznek. A statisztikai mező, a "teljesítmény" nevű egyéni összesítés, amely a hallgatók átlagos pontszámát számolja ki. Képlete: =ROUND( AVERAGE( 'diákok'[pontszám]); o ). Ezután hozzuk létre feltételes formázás célértékét szolgáltató egyéni összesítést! Neve legyen "maximális". Képlete =CALCULATE( ROUND( AVERAGE( 'vizsgák'[maximális pontszám]); o ); 'diákok'). A második összesítés létrehozása után adjuk meg a feltételes formázás tulajdonságait.

A Fő teljesítmény mutató feliratú parancstáblán először a KPI alapmezője (érték) feliratú listából ki kell választanunk a formázni kívánt egyéni összesítést. Ezt követően a célértéket kell deklarálnunk: [1] ha ez konstans, akkor beírjuk a Rögzített érték mezőbe, [2] ha egy másik egyéni összesítés, akkor a Mérték legördülő listából kell kiválasztanunk a nevét. A mi esetünkben ez a "maximális" nevű egyéni összesítés! A szakaszhatárok megadása előtt ikonkészletet kell választanunk a parancstábla aljáról. A vizuális elemzéshez a bővítmény négy darab három elemű és egy darab öt elemű ikonkészletet kínál. Válasszuk az "x, !, ✓" készletet!

Az egyéni összesítés értéktartományának szakaszhatárait az Állapotküszöbök definiálása felirat alatt álló színes sávon kell megadnunk. A modul három elemű ikonkészlethez két darab, öt elemű ikonkészlethez négy darab szakaszhatárolót jelenít meg. A kis, tölcsérre emlékeztető ábrácskát lenyomott egérbillentyűvel jobbra-balra huzigálhatjuk. Állítsuk be az első csúszkát hatvan, a másodikat kilencven százalékra!



95. ábra alulról közelítő célértékes vizuális elemzés tulajdonságai

Ha az elemzés célértéke egyéni összesítés, akkor a határértékeket az egyéni összesítés eredményének százalékában adhatjuk meg. Konstans célérték esetén a határértékek is konstansok lesznek. A sávon megjelenített Cél feliratú szaggatott vonal a célértéket jelöli. A mi példánkban ez száz százalékot jelent.

| célérték          | 3 elemű ikonkészlet   | 5 elemű ikonkészlet             |  |  |
|-------------------|-----------------------|---------------------------------|--|--|
| egyéni összesítés | 40%, 80%              | 20%, 40%, 60%, 80%              |  |  |
| konstans          | a célérték 40%, 80%-a | a célérték 20%, 40%, 60%, 80%-a |  |  |

96. ábra a célértékes elemzéshez felajánlott határértékek

A feltételes formázás tulajdonságainak megadását követően az egyéni összesítés vezérlője átalakul a mezőlistán. Az fx jelzés helyett egy közlekedési lámpát, az egy jelölőnégyzet helyett hármat kapunk, amellyel külön-külön szabályozhatjuk a statisztikai értékeknek (Érték <egyéni összesítés>), a feltételes formázás cél- vagy középértékének (Cél) illetve a feltételes formázásnak (Állapot) a megjelenítését.

|        | név                         |           | I ak   | ok<br>név    |                 |  |  |
|--------|-----------------------------|-----------|--------|--------------|-----------------|--|--|
|        | vizsga kód                  |           |        |              |                 |  |  |
|        | pontszám                    |           |        | nontszám     |                 |  |  |
|        | f <sub>y</sub> teliesítmény |           |        | fr maximális |                 |  |  |
|        | f., na svina ális           |           |        | n in in      |                 |  |  |
| ш.     | JX maximalis                |           | 4 € 1  | eijesitmeny  | oliocítmónu     |  |  |
| 🗉 vizs | aák                         |           |        |              | eijesititietty/ |  |  |
| V 1    | tantárgy                    |           | L      | _ Cél        |                 |  |  |
|        | vizsaa kód                  |           | [      | Állapot      |                 |  |  |
|        |                             |           |        |              |                 |  |  |
| _      |                             | -         |        |              |                 |  |  |
| 1      | név 💽                       | vizsga kó | id 👘 🖬 | pontszám     |                 |  |  |
| 1      | Rideg Emilia                | E1-2      |        |              | 95              |  |  |
| 2      | Bacsó Zoltán                | E2-2      |        |              | 280             |  |  |
| 3      | Lakos Mónika                | MI2-2     |        |              | 97              |  |  |
| 4      | Kövér Aladár                | H1-1      |        |              | 138             |  |  |
| - E    | teljesítmény: 180 🔳         |           |        |              |                 |  |  |
|        | maximum: 266                |           |        |              |                 |  |  |
|        |                             |           |        |              |                 |  |  |

97. ábra a feltételesen formázott egyéni összesítés megjelenítése a mezőlistán és adatnézetben a számítási területen

A feltételes formázás létrehozás után az ábrácskák helyett számok (-1, 0, 1) jelennek meg a kimutatásban. Ez program-hiba. Ha az Állapot jelölőnégyzet pipáját töröljük, majd újra megadjuk, akkor láthatóvá válnak az ikonok.

| Sorcímkék           | <ul> <li>teljesítmény</li> </ul> | Sorci    | ímkék             | -       | teljesítmény   | teljesítmény állapot |
|---------------------|----------------------------------|----------|-------------------|---------|----------------|----------------------|
| 🗏 Aradi Róbert      |                                  | ⊟ Ar     | radi Róbert       |         |                |                      |
| művészettörténet I. | 264                              |          | művészettörténe   | et I.   | 264            | 1                    |
| művészettörténet II | . 256                            |          | művészettörténe   | et II.  | 256            | 1                    |
| művészettörténet II | I. 211                           |          | művészettörténe   | et III. | 211            | 0                    |
| művészettörténet IV | 1. 127                           |          | művészettörténe   | et IV.  | 127            | -1                   |
| világirodalom II.   | 216                              |          | világirodalom II. |         | 216            | 0                    |
| 🗏 Arató Csanád      | Sorcímkék                        |          | * teljesítmény    | teljesi | ítmény Állapot |                      |
| esztétika III.      | 🗆 Aradi Róbert                   |          |                   |         |                | -1                   |
| humánetológia II.   | művészettö                       | rténet l | . 264             | 0       |                | 1                    |
| statisztika III.    | művészettö                       | rténet l | I. 256            | õ       |                | 0                    |
| statisztika IV.     | művészettö                       | rténet l | II. 211           | õ       |                | 0                    |
|                     | művészettö                       | rténet l | V. 127            | ×       |                |                      |
|                     | világirodalo                     | om II.   | 216               | Ō       |                |                      |
|                     | 🗏 Arató Csanád                   |          |                   |         |                |                      |
|                     | esztétika II                     | I.       | 134               | 8       |                | 1                    |
|                     | humánetol                        | ógia II. | 257               | 0       |                |                      |
|                     | statisztika                      | III.     | 228               | •       |                |                      |
|                     | statisztika                      | IV.      | 126               | •       |                |                      |
|                     |                                  |          |                   |         | ~              | ]                    |

<sup>98.</sup> ábra a kimutatás a feltételes formázás beállítása előtt, a beállítás után, majd a hiba kijavítását követően

Konstans célérték megadása szükségessé teheti a színes sávval szimbolizált értéktartomány tágítását illetve szűkítését. Erre a célra szolgál a sáv két szélén álló kétirányú nyíl. Ha lenyomott egérbillentyűvel a kis ábrácskát "kihúzzuk" a panelről, akkor tágítjuk, ha "behúzzuk" a panel közepe felé, akkor szűkítjük a szimbolizált értéktartományt.



99. ábra az intervallum tágítása (a kettős nyilat kifelé húzni) és szűkítése (... befelé húzni)

A felülről közelítő célértékes vizuális elemzés létrehozásához át kell húznunk a kis tölcséreket a célérték jobb oldalára és ha szükséges a négy színes sáv bal alsó elemével meg kell fordítanunk az ikonok sorrendjét.

# középértékes elemzés létrehozása

Vannak olyan adathalmazok, amelynek elemeitől azt várjuk, hogy minél jobban közelítsék meg az általunk ideálisnak vélt értéket, a középértéket. Másként fogalmazva az egyes elemek ne legyenek sokkal nagyobbak, de ne legyenek sokkal kisebbek sem a középértéknél. Akkor vagyunk elégedettek, ha az értékek egy szűk sávon belül szóródnak. Példaként gondoljunk autóbusz járatok követési idejére vagy egy valutára, amelyet az ország nemzeti bankja tranzakciókkal próbál egy árfolyam-sávban tartani. Ezeket a halmazokat középértékes elemzéssel szemléltethetjük, amely egy alulról közelítő és egy felülről közelítő célértékes ábrázolás egyesítése. Beállítása az intervallum-sáv alatti négy színes téglalap jobb felső elemével történik. A jobb alsó vezérlővel az ikonok sorrendjét fordíthatjuk meg. A megjelenítés tulajdonságainak megadási módja azonos a célértékes elemzésnél megismerttel.



100. ábra középértékes vizuális elemzés szakaszhatárai

A Fő teljesítmény mutató KPI panel egy összetett parancstábla, két lappal. A lapok közötti váltás vezérlője a felfelé mutató kettős nyíl a panel bal alsó sarkában. A parancstábla második lapján megjegyzéseket fűzhetünk a feltételes formázás objektumaihoz.

| Fő teljesítménymutató (KPI)       | ?      | $\times$ |
|-----------------------------------|--------|----------|
| KPI alapmezője (érték): átlag     | ~      |          |
| KPI állapot <u>a</u>              |        |          |
| Határozza meg a célértéket:       |        |          |
| ◯ <u>M</u> érték:                 | ~      |          |
| <u>R</u> ögzített érték:     1300 |        |          |
|                                   | $\geq$ | 4        |
| <u>I</u> konstílus kiválasztása:  |        |          |
|                                   | )      |          |
|                                   | )      |          |
|                                   |        |          |
| * Leírások                        |        |          |
|                                   |        |          |
| ОК                                | Mégs   | e:       |

101. ábra az összetett parancstábla második lapját megjelenítő vezérlő
# függvények

# a DAX-függvény jellemzői

A DAX-függvények néhány tulajdonsága eltér a programban megszokottól. Ezek a következők.

[1] Angol nevek. A függvények nevét nem fordították le magyar nyelvre.

[2] Nincsenek "kötetlen argumentum-számú" függvények. Természetesen az Excelben sincsenek ilyenek, de azért a kétszázötvenhatos argumentum-határt nehéz megközelíteni a SZUM, az ÁT-LAG vagy mondjuk a SZORZAT függvénnyel. A DAX hasonló függvényei mindig csak egyetlen mezőt vizsgálnak.

[3] Nincs tartomány-hivatkozást. Másként fogalmazva, nincs rekord-csoport hivatkozást. Ez a sajátosság a mezők tartományára is vonatkozik. Ha tartomány-hivatkozással nem is, de függvényekkel szűkíthetjük egy DAX kifejezés hatókörét.

[4] Szűrőkezelés a képletben. Függvények segítségével meghatározhatjuk a képlet kiértékelésekor számításba veendő szűrők körét.

[5] Táblát eredményező függvények. A DAX függvények egy része virtuális táblát eredményez, egy vagy több nevesített mezővel, egy vagy több rekorddal. A táblát eredményező függvények csak egy másik függvény argumentumaként szerepelhetnek a képletben.

[6] Korlátlan egymásba ágyazási lehetőség. A logikai szinteknek számának csak a számítási kapacitás szab határt.

# dátumok kezelése

A bővítmény TODAY függvénye, azonos a program MA függvényével: az operációs rendszer által szolgáltatott, aktuális dátumot adja eredményül, nulla óra nulla perc nulla másodperc időponttal kiegészítve.

Egy dátum éveinek, hónapjainak és napjainak számát a YEAR, a MONTH és a DAY függvényekkel határozhatjuk meg. A függvények egyetlen argumentuma a dátumot eredményező kifejezés, vagy a dátumot tartalmazó mező, beleértve a számított mezőket is, amelyekkel dátumot hoztunk létre. A három függvény működése azonos a program ÉV, HÓNAP és NAP nevű függvényeivel.

Egy dátum és az őt tartalmazó hét tulajdonságait a WEEKDAY és WEEKNUM függvényekkel határozhatjuk meg. A két függvény működése hasonló a program HÉT.NAPJA és HÉT.SZÁMA függvényeivel. A WEEKDAY függvénnyel megállapíthatjuk, hogy a dátum a hét hányadik napjára esik. A dátumot a függvény első-, a sorszámozás módját a függvény második argumentumával kell deklarálnunk. Ha a második argumentum kettő (2), akkor a hétfő az egyes (1), a vasárnap a hetes (7) sorszámot kapja. A WEEKNUM függvénnyel megállapíthatjuk, hogy a vizsgált dátumot az év hányadik hete tartalmazza. A függvény első argumentumával a dátumot, második argumentumával a hét kezdőnapját határozhatjuk meg. Ha a második argumentum kettő (2) akkor a hét első napja a hétfő. A függvény nem az EU-s szabvány szerint működik, mert az év első hetének a január elsejét tartalmazó hetet tekinti és nem az év első csütörtökét tartalmazót.

A DATE, az EDATE és az EOMONTH függvényekkel, a program DÁTUM, KALK.DÁTUM és HÓ-NAP.UTOLSÓ.NAP függvényeihez hasonlóan, naptár-helyes dátumot képezhetünk. A DATE függvény argumentumaival egy dátum éveinek számát, hónapjainak számát és napjainak számát deklarálhatjuk. Az argumentumok lehetnek szám-konstansok, számot tartalmazó mezők vagy számot eredményező kifejezések. A dátum összeállítása előtt a függvény a tizedes tört argumentumait egészre kerekíti.

Az EDATE függvény az első argumentumával meghatározott dátum, második argumentumával deklarált számú hónappal időben eltolt megfelelőjét adja eredményül. A függvény második argumentuma tehát egy előjeles szám-konstans, előjeles számot tartalmazó mező vagy egy előjeles számot eredményező kifejezés. A dátum képzése előtt a függvény a tört számot egészre kerekíti. A

második argumentum negatív előjele az első argumentum dátumánál korábbi, pozitív előjele, későbbi időpontot eredményez. Az EOMONT függvény működése és szintaktikája azonos az EDATE függvénnyel, csak az eltolással képzett dátum hónapjának utolsó naptári napját adja eredményül.

A YEARFRAC függvény egy időszak hosszát számolja ki években. Eredménye tizedes tört. Első két argumentuma, tetszőleges sorrendben, az időszak első és utolsó napját definiálja, harmadik argumentumával a számítás módját írhatjuk elő: a lehetséges öt metódust egész számok szimbolizálják, nullától négyig. A tényleges értéket, azaz az ABS( [dátum<sub>1</sub>] - [dátum<sub>2</sub>] ) / 365,25 képlettel nyert törtszámot, az egyes számú (1) változat közelíti meg legjobban.

A három argumentumos DATEDIFF függvénnyel két dátum közötti dátumegységek számát határozhatjuk meg. Első argumentumával a vizsgált időszak első napját, második argumentumával az utolsó napját, harmadik argumentumával a megszámlálandó dátumegységet deklaráljuk. A dátumegység nevét idézőjelek nélkül kell megadnunk: year, quarter, month, week, day, hour, minute, second. A felsorolás utolsó három eleme időegység, tehát az első és a második argumentummal időpontokat is meghatározhatunk: kezdés, befejezés sorrendben.

A DATEVALUE függvénnyel dátumot hozhatunk létre karakterláncból. A függvény egyetlen argumentuma az átalakítandó karakterlánc. Például: =DATEVALUE ( [év] & ".01.01." )

| TODAY                | aktuális dátum képzése                        |
|----------------------|-----------------------------------------------|
| YEAR, MONTH, DAY     | dátumegységek számának megállapítása          |
| WEEKDAY, WEEKNUM     | nap sorszáma a héten, hét sorszáma az évben   |
| DATE, EDATE, EOMONTH | dátum képzése                                 |
| YEARFRAC             | két dátum különbsége években, tört számként   |
| DATEDIFF             | két dátum közötti dátumegységek megszámlálása |
| DATEVALUE            | szöveges dátum konvertálása dátummá           |

102. ábra dátum-kezelő függvények funkció szerint csoportosítva

A DATEVALUE függvénnyel kapcsolatban tudnunk kell: a szöveg adattípusú dátumokat a DAX automatikusan dátummá konvertálja, ha azt a feldolgozás megköveteli.

# tételek csoportosítása a kimutatásban

A kimutatásos adatelemzés az adathalmazok csoportosított statisztikai vizsgálatát teszi lehetővé. A csoportosítás a sor és az oszlopmezők tételei alapján történik. A csoportosító mezők tételei tovább kategorizálhatók a program eszközeivel, de ezek a szolgáltatások, karakteres és numerikus mezők esetén, a PowerPivot kimutatásban elérhetetlenek. Az utasítások a szalagon aktívak, de a parancsok hibaüzenetet generálnak: A kijelölés nem fogható csoportba (sic!).

A tételek csoportosíthatóságának feltételeit a felhasználónak kell megteremtenie. A gyakorlatban ez azt jelenti, hogy létre kell hoznia a táblában egy számított mezőt, amely tartalmazza a csoportosítást biztosító azonosítókat.

# karakteres tételek csoportosítása

Szöveg adattípusú mezők tételeinek csoportosításához létre kell hoznunk a csoportneveket tartalmazó számított mezőt. Képletében minden tételnek deklarálnunk kell a csoportját.

Lássunk egy példát a szöveg-csoportosító képletre! Egy vállat személyautóinak javításait kívánjuk PowerPivot-kimutatással elemezni. Kíváncsiak vagyunk a javítások számára, gyártók szerinti bontásban. Ehhez a "javítások" tábla "típus" mezőjének tételeit kell csoportosítanunk. A személyautók három konszerntől származnak. [1] Renault: Dacia és Renault típusok. [2] PSA: Citroen és a Peugeot modellek. [3] VW: Audi, Skoda, Seat, Volkswagen autógyárak termékei. Létre kell hoznunk egy számított mezőt, amelyben megadjuk minden típus gyártóját. A feladatot két IF függvényekkel oldjuk meg: =IF( SEARCH ( "dacia"; [típus];; o ) > o || SEARCH( "renault"; [típus];; o); "Renault"; IF( SEARCH( "citroen"; [típus];; o ) > o || SEARCH( "peugeot" ; [típus];; o ) > o; "PSA"; "VW" )). A számított mező neve legyen GYÁRTÓ!

A SEARCH függvénnyel egy, az első argumentumával meghatározott, karakterláncot keresünk a függvény második argumentumával meghatározott szövegben. A keresett karakterlánc helyettesítő karaktereket is tartalmazhat. A függvény eredménye egy sorszám: hányadik karaktertől kezdődik a szövegben a keresett karakterlánc. A függvény további argumentumai nem kötelezőek. A függvény harmadik argumentuma egy sorszám, a szöveg hányadik karakterétől kezdődjön a keresés, ha nem a teljes szöveget szeretnénk átvizsgálni. A negyedik argumentum szintén szám; az eredménytelen kereséshez rendelt érték. A mi képletünkben ez nulla. Ha a negyedik argumentum hiányzik, akkor a sikertelen keresés üres mezőt eredményez. A SEARCH függvény a kis és nagybetűk között nem tesz különbséget.

A képlet felépítése a következő. Minden gyártót egy IF függvényben deklarálunk, kivétel a legbelső IF, amelyben kettőt. A függvény feltétel argumentumában VAGY logikai kapcsolókat használtunk. Az autógyár nevét a SEARCH függvénnyel keressük a "típus" mezőben. Ha a feltétel teljesül, azaz a SEARCH függvény nullánál nagyobb számot ad eredményül, akkor a típus neve tartalmazza az autógyár nevét és a GYÁRTÓ mező bejegyzése az IF függvény második argumentumában álló tröszt-név lesz. Ellenkező esetben a függvény harmadik argumentumában álló IF függvény hajtódik végre, azaz folytatódik a keresés.

Fogalmazzuk meg általánosan is képletet! A nevek a következők. [1] "mező": a csoportosítandó mező neve. [2] "tétel<sub>1</sub>", "tétel<sub>2</sub>", "tétel<sub>3</sub>"...: a csoportosítandó mező egyedi értékei. [3] "név<sub>1</sub>", "név<sub>2</sub>", "név<sub>3</sub>"...: a csoportnevek. Ha a csoportok száma "n", akkor a képletben álló IF függvények száma "n-1". A legbelső IF függvény második és harmadik argumentuma: "név<sub>n-1</sub>" és "név<sub>n</sub>".

```
=IF(
	SEARCH("tétel<sub>1</sub>";[mező];; 0) > 0 ||
	SEARCH("tétel<sub>2</sub>";[mező];; 0) > 0 ||
	SEARCH("tétel<sub>3</sub>";[mező];; 0) > 0;"név<sub>1</sub>";
	IF(
	SEARCH("tétel<sub>4</sub>";[mező];; 0) > 0 ||
	SEARCH("tétel<sub>5</sub>";[mező];; 0) > 0 ||
	SEARCH("tétel<sub>6</sub>";[mező];; 0) > 0;"név<sub>2</sub>";
	IF(...
```

103. ábra a csoportneveket adó számított mező képlete

# numerikus tételek csoportosítása

A numerikus mező tételeit a mező értéktartományának szakaszokra bontásával csoportosíthatjuk. Kialakíthatunk azonos vagy eltérő méretű szakaszokat. Az így kialakított csoportokat sorszámmal vagy névvel azonosíthatjuk.



104. ábra a numerikus mező értéktartományának felosztása azonos- (felül) és különböző méretű (alul) szakaszokra, csoportok azonosítása sorszámmal (felül) és névvel (alul)

Először vizsgáljuk meg az azonos nagyságú szakaszok kialakításának részleteit. Először indexet, azután neveket rendelünk a csoportokhoz. Csoportosítsuk a "számla" mező tételeit százezres szakaszokkal! A 300 000 forint alatti, valamint az 599 999 forint feletti számlák egy-egy csoportot alkossanak! A számított mezőt nevezzük CSINDEX-nek. Képlete: =IF( [számla] < 300000 ; 0 ; IF( [számla] < 600000 ; ROUNDUP(( [számla] - 300000 ) / 100000 ; 0 ) ; 4 )).

A 300 000 forint alatti számlák csoport-indexét a külső IF függvény IGAZ argumentuma adja. A függvény HAMIS argumentumában álló beágyazott IF függvény IGAZ argumentuma a 300 000 és 599 999 közötti, HAMIS argumentuma az 599 999 feletti számlák indexét állítja be. A ROUNDUP függvény azonos a program KEREK.FEL függvényével.

Fogalmazzuk meg általánosan a képletet. A nevek a következők. [1] "Értékek": a csoportosítandó mező. [2] "Alsó határ" és "felső határ": az értéktartomány skálázásának első és utolsó száma. [3] "lépésköz": a szakaszok nagysága.

> =IF( [értékek] < alsó határ ; o ; IF( [számla] < felső határ ; ROUNDUP(( [értékek] - alsó határ ) / lépésköz ; o ) ; csoportok száma - 1 ))

105. ábra a csoportindexet adó számított mező képlete, azonos nagyságú értéktartományok esetén

Az indexek segítségével már csoportosítani tudjuk a numerikus mező tételeit, de a sorszámok a kimutatásban nem túl informatívak, ezért az indexekhez "karakteres" azonosítót, vagy másként fogalmazva, címkét kell rendelnünk. Ezt a SWITCH függvénnyel tehetjük meg legegyszerűbben: =SWITCH([CSINDEX];0;"<300 000";1;"300 000-399 999";2;"400 000-499 999";3;"500 000 - 599 999";4;">=600 000").

A SWITCH függvény első argumentuma egy mezőnév vagy egy kifejezés. A mi esetünkben ez a CSINDEX. A függvény további argumentumai párban állnak. A pár első tagja a függvény első argumentumának egy lehetséges értéke, második tagja pedig az ehhez az értékhez rendelt konstans vagy kifejezés. Az argumentumlistát egy nem kötelező, önálló argumentum zárja. A függvény először kiértékeli az első argumentumát, majd a kapott értéket keresi az argumentum párosok első tagjaiban. Találat esetén kiértékeli a páros második argumentumát. Ha az érték az argumentum párosokban nem található, akkor végrehajtja az utolsó argumentumában deklarált műveletet. Amenynyiben az utolsó argumentum hiányzik, üres eredményt kapunk. Az argumentum-párosok második tagjainak és az utolsó, egyedülálló argumentumnak azonos adattípusú vagy azonos adattípusra konvertálható eredményt kell adniuk.

A tételek különböző nagyságú értéktartományokba sorolása egymásba ágyazott IF függvényekkel történik. A 104. ábra alsó vonala a "pontszámok" mező tételeinek értéktartományát szimbolizálja. Az "EREDMÉNY" csoportosító mező képlete a következő. EREDMÉNY: =IF( [pontszámok] < 120 ; "nem felelt meg" ; IF( [pontszámok] < 180 ; "megfelelt" ; "dicséretesen megfelelt" )).

> =IF( [mező] < határ1; név1; IF( [mező] < határ2; név2; IF( [mező] < határ1; névn; névn+1...

> > 106. ábra

numerikus mező értéktartományának különböző nagyságú szakaszokra bontása

A fenti ábra a példa képletének általánosítása: ahány határérték, annyi IF függvény áll a képletben. A legbelső IF második és harmadik argumentuma az utolsó előtti- és az utolsó csoport neve.

# dátum-tételek csoportosítása

A dátum adattípusú mezők tételeit dátumegységek szerint csoportosíthatjuk a kimutatásban. A dátumegységek lehetnek: évek, félévek, negyedévek, hónapok, hetek, az év napjai, a hónap napjai és a hét napjai. A dátumegység azonosítása történhet sorszám vagy név alapján.

| dátumegység  | azonosító                    |
|--------------|------------------------------|
| évek         | sorszám                      |
| félévek      | sorszám, név                 |
| negyedévek   | sorszám, név                 |
| hónapok      | sorszám, név, rövidített név |
| hetek        | sorszám                      |
| év napjai    | sorszám                      |
| hónap napjai | sorszám                      |
| hét napjai   | sorszám, név, rövidített név |

107. ábra dátumegységek azonosítása

Ha egy kimutatásban biztosítani szeretnénk a fenti táblázatban felsorolt összes csoportosítási lehetőséget, akkor tizennégy számított mezőt kellene létrehoznunk a dátum-mezőt tartalmazó táblában. A bővítmény ezt részben meg is teszi, amikor dátum adattípusú mezőt helyezünk a kimutatás sor vagy oszlopterületére.

# dátumok automatikus csoportosítása

A PowerPivot-kimutatás sor- vagy oszlopterületére helyezett dátum adattípusú mező tételeit a bővítmény év-, negyedév- és hónapok szerinti csoportosításban jeleníti meg. A csoportosítás automatikusan létrehozott számított mezőkön alapul: <mezőnév> (év), <mezőnév> (negyedév), <mezőnév> (hónap). A bővítmény létrehoz egy negyedik, rejtett mezőt is, a hónapok sorszámával, amely a hónapnevek időrendi megjelenítését szolgálja: <mezőnév> (hónap indexe).

| teljesítés 💽 | teljesítés (é | v) 💌     | teljesítés (negyedé     | v) 💌  | teljesítés (hói | nap index         | e) 💌   | teljesítés (hónap)  💌 | Oszlo |
|--------------|---------------|----------|-------------------------|-------|-----------------|-------------------|--------|-----------------------|-------|
| 2018.02.12.  | 2018          |          | Qtr1                    |       |                 |                   | 2      | febr                  |       |
| 2018.02.12.  | 2018          |          | Qtr1                    |       |                 |                   | 2      | febr                  |       |
| 2018.02.13.  | 2018          |          | Qtr1                    |       |                 |                   | 2      | febr                  | /     |
| 2018.02.14.  | 2018          |          | Qtr1                    |       |                 |                   | 2      | febr                  |       |
| 2018.02.14.  | 2018          |          |                         | _     |                 | ~                 | 2      | febr                  |       |
| 2018.02.15.  | 2018          | Y Szű    | rők                     |       | szlopok         |                   | 2      | febr                  |       |
|              |               |          |                         |       |                 |                   |        |                       |       |
|              |               |          |                         |       |                 |                   |        |                       |       |
|              |               | Sor      | ok                      | ΣΕ    | rtékek          |                   |        |                       |       |
|              |               | teljesít | és (év) 🔻               |       |                 |                   |        |                       |       |
|              |               | teljesít | és (negyedév) 🔻         |       |                 |                   |        |                       |       |
|              |               | teljesít | és (hónap) 🛛 🔻          |       |                 | Sorcímké          | k      | *                     |       |
|              |               | teljesít | és 🔻                    |       |                 | = 2018            | 1      | _                     |       |
|              |               |          |                         |       |                 | €fe               | ebr    |                       |       |
|              |               | Elrer    | ndezésfrissítés elhalas | ztása | Frie            | ±m                | nárc   |                       |       |
|              |               |          | raceconnosices enhands  | 20050 |                 | ∃ ⊕ Qtr2          | 2      |                       |       |
|              |               |          |                         |       |                 | ⊕ Qtr3     ⊕ Otr4 | 5<br>1 |                       |       |
|              |               |          |                         |       |                 | ± 2019            |        |                       |       |
|              |               |          |                         |       |                 | Végössze          | g      |                       |       |
|              |               |          |                         |       |                 |                   |        |                       |       |

108. ábra automatikusan létrehozott mezők a táblában, a pivot tábla segédablakában és a kimutatásban

A kimutatás sor- vagy oszlopterületén álló dátumegység-mezők tételeinek helyi menüjében a Csoportosítás... utasítására kattintva a program dátum-csoportosító parancstáblája jelenik meg. A tételek között ott találjuk a Napokat is, de a bővítmény kimutatásában nem tudunk beállítani több napot tartalmazó dátumegységet, például heteket, mert a panel Napok száma vezérlője inaktív. A PowerPivot-kimutatás sor- vagy oszlopterületére helyezett, csak időpontokat tartalmazó dátum adattípusú mező csupa "(üres)" címkéjű tételt eredményez.



109. ábra csak időpontokat tartalmazó mező a táblában, a PowerPivot-mezőlistán és a kimutatásban

Tetszőleges "(üres)" feliratra kattintva, jelenítsük mega a csoportosító parancstáblát és válaszszunk időegységeket! Az utasítás kiadása után a kimutatásban megjelenek a csoportosított tételek. Természetesen ezeknek a csoportosító időegységeknek is számított mező az alapja. Adatnézetben a származtatott mezők eredményeit vizsgálva látjuk, hogy a percek szerinti csoportosítást biztosító mező képlete hibás: =FORMAT( [mezőnév]; "mm" ). Javítsuk ki a képletet: =FORMAT( [mezőnév]; "nn" )! A függvényt később részletesen bemutatom.

A létrehozott segéd-mezők, függetlenül attól, hogy szerepelnek-e a kimutatásban vagy sem, mindaddig a rendelkezésünkre állnak, amíg nem adjuk ki a Csoportbontás utasítást. Ezt megtehetjük a kimutatásban álló mező egy tételének helyi menüjéből vagy a Kimutatáseszközök, Elemzés, Csoportosítás listájából.

# a naptár-tábla

A dátumok egységek szerinti, teljes körű csoportosítását illetve elemzését naptár-táblával biztosíthatjuk. Ez a tábla tartalmazza az elemzendő időszak összes dátumát és dátumegységeinek azonosítóit. A naptár-tábla funkciója kettős: [1] lehetővé teszi a dátum-adattípusú mezők tételeinek csoportosítását a kimutatásban és [2] biztosítja az időszak-kezelő függvények működéséhez szükséges összefüggő dátum-tartományt.

A bővítmény naptár-táblája a lehetséges tizennégyből öt dátumegység-azonosítót, plusz egy vegyes mezőt tartalmaz. amelyben név és index is szerepel. Ha nem akarunk lemondani a többi azonosító alkalmazásáról, akkor ezt a táblát át kell alakítanunk. A változtatásokat a PowerPivot moduljával el tudjuk menteni és ezt követően már a saját naptár-táblánkat használhatjuk.

A bővítmény a naptár-táblát hol dátumtáblázatnak, hol naptárnak nevezi.

| Date 💽                | Év 💌 | Hónap száma 💌 | Hónap 💌 | HHH-ÉÉÉÉ 💌 | Hét napjának száma 💌 | Hét napja 💌 |
|-----------------------|------|---------------|---------|------------|----------------------|-------------|
| 2017. 01. 01. 0:00:00 | 2017 | 1             | január  | jan-2017   | 1                    | vasárnap    |
| 2017. 01. 02. 0:00:00 | 2017 | 1             | január  | jan-2017   | 2                    | hétfő       |
| 2017. 01. 03. 0:00:00 | 2017 | 1             | január  | jan-2017   | 3                    | kedd        |
| 2017. 01. 04. 0:00:00 | 2017 | 1             | január  | jan-2017   | 4                    | szerda      |
| 2017_01.05.0:00:00    | 2017 | 1             | január  | jan-2017   | 5                    | csütörtök   |

110. ábra a bővítmény naptár-táblája

# a naptár-tábla létrehozása

A bővítmény naptár-moduljának parancsait a *Tervezés, Naptárak, Dátumtáblázat* listában találjuk. Ha az adatbázisban létezik dátum adattípusú mező, akkor az Új utasítással kérhetjük a naptár-tábla beszúrását. A megjelenő Naptár nevű tábla első mezője a dátumokat tartalmazó "Date" mező. A további mezőket töröljük le és szerkesszük meg, a mind a tizennégy dátumegység-azonosítóit tartalmazó, táblát. A mezők elnevezését és DAX képletét az alábbi táblázat tartalmazza.

| mezőnév             | DAX képlet                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| év                  | = YEAR([Date])                                                                                                                                                                                                                                                                                                                                                                                   |
| félév index         | = ROUNDUP( MONTH([Date])/6; 0)                                                                                                                                                                                                                                                                                                                                                                   |
| félév név           | = IF( [félév index] = 1 ; "I. félév" ; "II. félév" )                                                                                                                                                                                                                                                                                                                                             |
| negyedév index      | = ROUNDUP( MONTH([Date])/3;0)                                                                                                                                                                                                                                                                                                                                                                    |
| negyedév név        | = SWITCH( [negyedév index] ; 1 ; "I. negyedév" ; 2 ; "II. negyedév" ;<br>3 ; "III. negyedév" ; 4 ; "IV. negyedév" )                                                                                                                                                                                                                                                                              |
| hónap index         | = MONTH([Date])                                                                                                                                                                                                                                                                                                                                                                                  |
| hónap név           | = FORMAT([Date]; "mmmm")                                                                                                                                                                                                                                                                                                                                                                         |
| hónap név rövidítve | = CONCATENATE( FORMAT( [Date]; "mmm" ); "." )                                                                                                                                                                                                                                                                                                                                                    |
| hét index*          | <pre>= IF( IF( WEEKDAY( DATE( YEAR( [Date]);1;1);2) &lt; 5;<br/>WEEKNUM( [Date];2);<br/>WEEKNUM( [Date];2)-1<br/>) = 0;<br/>IF( WEEKDAY( DATE( YEAR( [Date])-1;1;1);2) &lt; 5;<br/>WEEKNUM( DATE( YEAR( [Date])-1;12;31);2);<br/>WEEKNUM( DATE( YEAR( [Date])-1;12;31);2)-1<br/>);<br/>IF( WEEKDAY( DATE( YEAR( [Date]);1;1);2) &lt; 5;<br/>WEEKNUM( [Date];2);<br/>WEEKNUM( [Date];2)-1))</pre> |
| év napjai index     | = ( [Date] - DATE( YEAR( [Date] ) - 1 ; 12 ; 31 )) * 1                                                                                                                                                                                                                                                                                                                                           |
| hónap napjai index  | = DAY([Date])                                                                                                                                                                                                                                                                                                                                                                                    |
| hét napjai index**  | = WEEKDAY([Date]; 2)                                                                                                                                                                                                                                                                                                                                                                             |
| nap név             | = FORMAT([Date];"dddd")                                                                                                                                                                                                                                                                                                                                                                          |
| nap név rövidítve   | = CONCATENATE( FORMAT( [Date]; "ddd" ); "." )                                                                                                                                                                                                                                                                                                                                                    |

\* az év első hete az év első csütörtökét tartalmazó hét \*\* a hétfő az egyes (1) a vasárnap a hetes (7)

111. ábra a naptár-tábla dátumegység-azonosító mezői

Az egyes függvények működését itt külön-külön nem ismertetem csak a hét sorszámát kiszámoló képlet felépítését magyarázom el. A hetek számát a WEEKNUM([Date]) képlettel számolhatjuk ki, amelyet nevezzünk így <hét száma>. A DAX WEEKNUM függvénye nem az EU-s szabvány szerint működik, mert az év első hetének a január elsejét tartalmazó hetet tekinti és nem az év első csütörtökét tartalmazót. Tehát azokban az években, amelyekben a január elseje péntek, szombat vagy vasárnapra esik, a WEEKNUM függvény eredményéből le kell vonnunk egyet: <hét száma> - 1. Először a vizsgált dátum évének első napját kell képeznünk. <újév>: DATE( YEAR( [Date] );1;1). Ezután meg kell állapítanunk, az <újév> sorszámát a héten, a hétfőt egyesnek tekintve. <újév index>: WEEKDAY( <újév>; 2).

A következő lépésben logikai művelettel meghatározzuk, hogy az <újév index> a hétfő - csütörtök időszakra esik-e: <újév index> < 5. A művelet eredménye határozza meg a <működés>-t. Képlete: IF( <újév index> < 5 ; <hét száma> ; <hét száma> - 1 ). A DAX IF függvénye egy kis eltéréstől eltekintve, azonos a program HA függvényével.

Ha az év első napja péntek, szombat vagy vasárnapra esik, akkor a <működés> nullát eredményez. Ezt az állapotot egy logikai művelettel ellenőrizhetjük: <működés> = 0. Ha az eredmény IGAZ, akkor az év első napjai az előző év utolsó hetébe esnek, tehát meg kell határoznunk az előző év utolsó hetének számát. A számítás lépéseit már ismerjük.

<előző újév>: DATE( YEAR( [Date] ) - 1; 1; 1).

<előző újév index>: WEEKDAY( <előző újév> ; 2 )

<szilveszter>: DATE( YEAR( [Date] ) - 1; 12; 31 )

<szilveszter hét száma>: WEEKNUM( <szilveszter>; 2 )

A végső képlet a fentieknek megfelelően: IF( <működés> = 0; IF( <előző újév index> < 5; <szilveszter hét száma>; <szilveszter hét száma> - 1); <működés> ).

Az "év napjai index" mező képletében álló eggyel való szorzás a mező adattípusát állítja át dátumról számmá.

Végül az elkészült táblát optimalizáljuk a használatra! Határozzuk meg a név-mezők tételeinek egyedi rendezését a rendezés más mező alapján művelettel.

| rendezendő mező                | rendező mező     |
|--------------------------------|------------------|
| félév név                      | félév index      |
| negyedév név                   | negyedév index   |
| hónap név, hónap név rövidítve | hónap index      |
| nap név, nap név rövidítve     | hét napjai index |

112. ábra egyedi rendezések a naptár-táblában

Rejtsük el azokat a sorszám-mezőket, amelyeket valószínűleg nem fogunk a kimutatásban szerepeltetni: félév index, negyedév index, hónap index, hét napjai index.

Kapcsolatnézetre váltva, a táblában egy hierarchikus mezőcsoport-kezdeményt találunk. Ezt töröljük a *Dátumhierarchia* név helyi menüjében álló paranccsal, majd ha szükséges, hozzunk létre saját rangsor szerinti mezőcsoportot.

Az elkészült táblát a Konfiguráció mentése paranccsal rögzíthetjük. Ezt követően a naptár-tábla, a bővítmény részeként, tetszőleges adatbázisba beszúrható. Próbaként töröljük a táblát, majd az Új utasítással hozassuk létre újra.

A fenti menüparancs csak akkor aktív, ha az adatbázisban található dátum adattípusú mező. A beszúrt naptár-tábla első napja az adatbázis dátum-mezőiben álló legkorábbi dátum évének első napja, utolsó napja pedig, az adatbázis dátum-mezőiben álló legkésőbbi dátum évének szilvesztere. A két határnapot a *Tartomány frissítése* utasítás után is megjeleníti a program, ha a naptár-tábla aktív.

A naptár-táblával lefedett időszak az adatbázis-táblák frissítését követően módosulhat. A megnövekedett dátum-tartomány határnapjait a felhasználóknak kell megadnia a *Tartomány frissítése* utasítással megjelenített parancstáblán. De hiába próbálkozunk, mert ez a funkció a magyar verzióban nem működik. Marad az amatőr módszer: a naptár törlése, majd ismételt beszúrása.

A naptár-táblán végrehajtott módosításainkat is a Konfiguráció mentése paranccsal kell rögzítenünk. A bővítmény eredeti naptár tábláját az Alapértelmezett paranccsal állíthatjuk vissza.

Természetesen a felhasználó önállóan is létrehozhat naptár-táblát, de akkor minden adatbázisban neki kell gondoskodnia a tábla importálásos vagy vágólapos létrehozásáról. A létrehozás után a menüszalag Naptárak, Megjelölés dátumtáblázatként, Megjelölés dátumtáblázatként parancsával deklarálnia kell a naptár-táblát és a dátumokat tartalmazó mezőjét. Ha a bővítmény naptár-modulját használjuk, akkor a deklaráció automatikus.

A PowerPivot része a CALENDAR és a CALENDARAUTO függvények, amelyekkel virtuális naptártáblát generálhatunk. A tábla egyetlen mezője a dátumokat tartalmazó Date mező. A CALENDAR függvény dátumtartományát két argumentumával kell meghatároznunk: első dátum, utolsó dátum. A CALENDARAUTO függvény dátumtartományának első napja, az adat-bázis legkorábbi dátuma évének január elsejéje, utolsó napja az adatbázis légkésőbbi dátuma évének szilvesztere. A függvény egyetlen argumentuma opcionális: a pénzügyi év utolsó hónapjának száma. Ha a bővítmény argumentumot észlel, akkor a visszaadott virtuális naptár első napja az adatbázis legkorábbi dátuma pénzügyi évének első napja és utolsó napja az adatbázis legkésőbbi dátuma pénzügyi évének utolsó dátuma lesz.

# a naptár-tábla kapcsolatai

A naptárt össze kell kapcsolni az összes elemzendő táblával és az összes elemzendő dátum-mezővel. Tehát előfordulhat, hogy két tábla között több kapcsolatot is létre kell hoznunk. Természetesen a bővítmény több kapcsolatot esetén is mindig csak egyet fog figyelembe venni: az aktív kapcsolatot. Az aktív kapcsolat az elsőnek létrehozott, vagy a felhasználó által kiválasztott kapcsolat.





A táblák közötti kapcsolat váltása két lépésben történik: először törölnünk kell a jelenlegi kapcsolat aktív-attribútumát és csak ezután választhatunk másik kapcsolatot. Adatnézetben a művelet végrehajtásának lépései a következők. [1] A *Tervezés, Kapcsolatok, Kapcsolatok kezelése* paranccsal nyissuk meg a kapcsolat-kezelő panelt! [2] A szerkesztés funkcióval jelenítsük meg az aktív kapcsolat részleteit! [3] A bal alsó sarokban töröljük az *Aktív* feliratú jelölőnégyzet pipáját majd az OK gombbal térjünk vissza a kapcsolatkezelő ablakába! [4] Válasszuk ki a használni kívánt kapcsolatot, majd a *Szerkesztés* nyomógombbal jelenítsük meg...

Egyszerűbb a dolgunk kapcsolatnézetben. Az aktív kapcsolatot folytonos-, az inaktívat szaggatott vonal szimbolizálja. A vonal helyi menüje tartalmazza a kapcsolat-váltás parancsait: *Megjelölés inaktívként*, *Megjelölés aktívként*. Természetesen a művelet ebben a nézeteben is két lépésből áll, először inaktiváljuk a jelenlegi-, majd aktíváljuk a használni kívánt kapcsolatot.

#### naptár-tábla a kimutatásban

Miután aktiváltuk a szükséges naptár-tábla kapcsolatot, hozzáfoghatunk a kimutatás felépítéséhez. A naptár-tábla mezői a sor vagy oszlop területre kerülnek, nagyság szerint, csökkenő sorrendben. Például, ha a statisztikai mező tételeit három dátumegység alapján szeretném összesíteni, akkor a naptártábla mezői ebben a sorrendben állnak a mezőlista sorok területén: "év", "hónap név", "dátum".

A bővítmény és a program dátumszűrő listája azonos. Néhány félreérthető relációja pontosításra szorul. Két érték között...: a határértékeket is beleértve. Következő-, E-, Előző hét: a hét vasárnappal kezdődik. Utolsó negyedév: előző negyedév. Folyó év: az aktuális év összes napja. Évkezdettől: az aktuális év eltelt napjai, az aktuális napot is beleértve.

# időszak-kezelő függvények

A bővítmény dátum-kezelő függvényeinek egy része meghatározott időszak dátumait vizsgálja. Ez az időszak lehet egy dátumegység, például év, negyedév, hónap, de lehet a felhasználó által, határnapokkal deklarált időintervallum is. Ezeket a függvényeket a bővítmény "időbeliintelligencia-függvényeknek" nevezi.

Az időszak-kezelő függvények ismertetésekor "az elemzett dátumegység" kifejezés a kimutatás sor-vagy oszlopterületen álló mezőnek, azt a tételét jelenti, amelyhez a tárgyalt függvényt tartalmazó, egyéni összesítés egy konkrét előfordulása tartozik. Másként fogalmazva, az a dátumegységtétel, amelyet az egyéni összesítés, egy konkrét előfordulása, a kimutatásban elfoglalt pozíciójával a sor-vagy oszlopterületen meghatároz, az "az elemzett dátumegység".

| év          | ٠ | félév 🚽  | ¥   | FD           | LD         |
|-------------|---|----------|-----|--------------|------------|
| <b>2013</b> |   | I. félé  | v   | 2013.01.26   | 2013.01.26 |
|             |   | II. félé | v   | 2013.08.15   | 2013.12.22 |
| <b>2014</b> |   | I. félé  | v   | 2014.03.17   | 2014.06.18 |
|             |   | II. félé | v   | 2014.10.27   | 2014.12.27 |
| <b>2015</b> |   | I. félé  | v   | 2015.04.06   | 2015.04.06 |
|             |   | II. félé | v   | 2015.07.25   | 2015.12.08 |
| <b>2016</b> |   | I. félé  | v   | 2016.05.01   | 2016.05.09 |
|             |   | II. félé | v   | 2016.09.19   | 2016.09.19 |
| FD          |   | =FIR     | ST  | DATE( A[dátu | mok] )     |
| LD          |   | =LAS     | STD | ATE( A[dátur | nok] )     |

114. ábra az elemzett dátumegység (2015 II. félév) és az őt meghatározó LD nevű egyéni összesítés egy előfordulása (2015.12.08)

Minden időszak-kezelő függvény egy vagy több dátumot keres egy meghatározott időintervallumban. Erre a dátumtartományra a függvény leírásában a "vizsgált időszak" vagy a "vizsgált dátumegység" szavakkal fogok hivatkozni. Tehát az elemzett dátumegység és a vizsgált dátumegység nem szinonimák, hanem önálló fogalmak!

Az időszak-kezelő függvények bemutatásakor meg kell különböztetnünk egy dátumegység naptári és a táblában tárolt dátumait. Vegyük például a 2017-es év januári dátumait. A naptárban ennek a dátumegységnek a legkorábbi dátuma 2017.01.01., de a táblában tárolt dátumok között a legkorábbi csak 2017.01.25. A táblában álló dátumokat a "tárolt" jelzővel különböztessük meg a "naptárban" állóktól!

Az időszak-kezelő függvények dátum-argumentumában a mezőneveket mindig a táblájuk nevével együtt kell szerepeltetnünk.

# meghatározott napok adatainak feldolgozása

Az időszak-kezelő függvények funkciójuk szerint tovább csoportosíthatók. Az első csoport függvényei egy kifejezést értékelnek ki egy dátumegység meghatározott napjának illetve napjainak adataival. Másként fogalmazva, ezekkel a függvényekkel a hónap, a negyedév, vagy az év meghatározott napjának rekordjait dolgozhatjuk fel. Vegyük sorra a függvényeket és az általuk kezelt napokat!

| függvény                           | kezelt nap                                                                                                     |
|------------------------------------|----------------------------------------------------------------------------------------------------------------|
| OPENINGBALANCEMONTH/-QUARTER/-YEAR | az elemzett napot tartalmazó hónapot/negyedévet/évet megelőző,<br>tárolt hónap/negyedév/év tárolt utolsó napja |
| CLOSINGBALANCEMONTH/-QUARTER/-YEAR | az elemzett napot tartalmazó hónap/negyedév/év tárolt utolsó napja                                             |
| TOTALMTD/-QTD/-YTD                 | az elemzett napot tartalmazó hónap/negyedév/év napjai<br>az elemzett nappal bezárólag                          |

115. ábra

a képlet-kiértékelő időszak-kezelő függvényekkel kezelt napok

A csoportot tehát három függvény, az OPENINGBALANCE, a CLOSINGBALANCE és a TOTAL függvények, hónapokat, negyedéveket és éveket vizsgáló változatai alkotják.

A kilenc függvény szintaktikája azonos. Első argumentumukkal a kiértékelendő kifejezést, második argumentumukkal a dátumokat tartalmazó mezőt kell deklarálnunk, a harmadik, nem kötelező argumentumukkal pedig logikai operátorokkal összekapcsolt szűrőfeltételeket határozhatunk meg a tábla egyik mezőjéhez.



116. ábra egy példa a képlet-kiértékelő időszak-kezelő függvények szintaktikájára

A képen látható egyéni összesítés képlete az elemzett napot tartalmazó hónap utolsó tárolt napjának, "A" és "B" kategoriás munkáinak árbevételét összesíti. A bővítmény RIGHT függvényének funkciója és szintaktikája azonos a program JOBB függvényével.

Ezek a függvények tehát meghatározott, tárolt dátumok rekordjainak feldolgozását teszik lehetővé, ezért naptár-táblát nem igényelnek.

| dátumo | k 💌  | számol | k   | -          |        |            |             | 16         |      |        |             |           |          |    |
|--------|------|--------|-----|------------|--------|------------|-------------|------------|------|--------|-------------|-----------|----------|----|
| 2016.0 | 1.02 | 1      | 1   |            |        |            |             | datumo     |      | szamok | ¥           |           |          |    |
| 2016.0 | 1.05 | 1      | 1   |            |        |            |             | 2016.0     | 1.20 | 1      | dátumok 😁   | OBQ       | CBQ      | TQ |
| 2016.0 | 1.11 | 1      | 1   | datumok 😁  | OBM    | CBM        | IM          | 2016.0     | 1.25 | 1      | 2016.01.20  |           | 2        | 1  |
| 2016.0 | 1.24 | 1      | 1   | 2016.01.02 |        | 2          | 1           | 2016.0     | 2.21 | 1      | 2016.01.25  |           | 2        | 2  |
| 2016.0 | 1.24 | 1      | 1   | 2016.01.05 |        | 2          | 2           | 2016.0     | 3.12 | 1      | 2016.02.21  |           | 2        | 3  |
| 2016.0 | 2.03 | 1      | 1   | 2016.01.11 |        | 2          | 3           | 2016.0     | 3.12 | 1      | 2016.02.22  |           | 2        | 4  |
| 2016.0 | 2.28 | 1      | 1   | 2016.01.24 |        | 2          | 5           | 2016.0     | 4.05 | 1      | 2016 03 12  |           | 2        | 6  |
| 2016.0 | 2.28 | 1      | 1   | 2016.02.03 | 2      | 4          | 1           | 2016.0     | 4.10 | 1      | 2016 04 05  | 2         | 4        | 1  |
| 2016.0 | 2 28 | 1      | 1   | 2016.02.28 | 2      | 4          | 5           | 2016.0     | 5.03 | 1      | 2016.04.10  | 2         | 4        | 2  |
| 2016.0 | 2.28 | 1      | 1   | 2016.03.05 | 4      | 3          | 1           | 2016.0     | 5.03 | 1      | 2016.05.03  | 2         | 4        | 6  |
| 2016.0 | 3.05 |        | 1   | 2016.03.11 | 4      | 3          | 2           | 2016.0     | 5.03 | 1      | 2016.07.26  | 4         | 1        | 2  |
| 2010.0 | 3.05 | 1      | 1   | 2016.03.26 | 4      | 3          | 5           | 2016.0     | 7.26 | 1      | 2016.09.26  | 7         | 1        | 2  |
| 2010.0 | 2.26 |        |     | 2016.04.02 | 3      | 1          | 1           | 2016.0     | 7.26 | 1      | 2010.09.20  | 7         | 1        | 1  |
| 2010.0 | 2.20 |        |     |            |        |            |             | 2016.0     | 9.26 | 1      | 2016.09.29  | 1         | 1        | 1  |
| 2010.0 | 3.20 |        |     |            |        |            |             | 2016.0     | 9.29 | 1      | 2010.10.15  | <u> </u>  |          |    |
| 2016.0 | 5.20 |        | L   |            |        |            |             | 2016.1     | 0 15 | 1      |             |           |          |    |
| 016.0  | 411  | -      | 1   |            |        |            |             |            |      |        |             |           |          |    |
|        | OB   | 4 =0   | PEN |            | MONTH( | SUM/ [szái | mokl) · Ald | látumokl ) | OB   |        |             | FOLIARTER | RI SLIMI |    |
|        | CBN  | / =C   | 105 | INGBALANCE | MONTH  | SUM( [szán | nok]) · A[d | átumokl )  | CBC  | 0 =010 | SINGBALANCE | OUARTER   | (SUM(    |    |

117. ábra a képlet-kiértékelő függvények működésének szemléltetése forrás-kimutatás párosokkal

TM

=TOTALMTD( SUM( [számok] ) ; A[dátumok] )

=TOTALQTD( SUM( ...

TQ

A függvény-családok éveket vizsgáló tagjainak (OPENINGBALANCEYEAR, CLOSINGBALANCEYEAR, TOTALQTD) van egy negyedik, elhagyható argumentumuk is, amellyel az év utolsó napját deklarálhatjuk, a hónap és a nap megadásával. Az argumentum értékének idézőjelek között kell állnia! A hónapot megadhatjuk névvel ("szeptember 6"), rövidített névvel ("szept-6") és sorszámmal ("9/6"). Tagoló karakter a szóköz, a kötőjel vagy a perjel lehet. Az "év vége" argumentumot nem használhatjuk üres szűrő-argumentummal. Magyarul ez a formula hibát generál: ...; ; "jan 3"). Ha egyedi év végét deklarálunk szűrők nélkül, akkor a harmadik argumentumban ismételjük meg a dátummező deklarációját. Például: OPENINGBALANCEYEAR( SUM( [számok] ) ; adatok[dátumok] ; adatok[dátumok] ; "szept-6" ).

A névkiegészítőben az OPENINGBALLANCE függvény leírása értelmetlen: "A megadott szűrők alkalmazása után kiértékeli a megadott kifejezést az előző hónap/negyedév/év végének megfelelő dátumra". Helyesen: a megadott szűrők alkalmazása után kiértékeli a megadott kifejezést az előző hónap/negyedév/év tárolt utolsó dátumára.

# dátumot adó időszak-kezelő függvények

Az időszak-kezelő függvények többsége dátumot ad eredményül. Ez lehet egyetlen dátum vagy dátumok halmaza. Ezek az időszak-kezelő függvények már csak naptár-táblával működnek! Először vegyük sorra az egyetlen dátumot eredményező függvényeket.

A STARTOFMONTH/-QUARTER/-YEAR és ENDOFMONTH/-QUARTER/-YEAR függvények a nevükben szereplő dátumegységek elemzésére alkalmasak. Az argumentumukkal meghatározott dátumok közül az elemzett dátumegység tárolt, legkorábbi/legkésőbbi dátumát adják eredményül. A negyedéveket és a hónapokat vizsgáló változatok egyetlen argumentuma a dátumokat tartalmazó mező. Az éveket vizsgáló változatok második, nem kötelező argumentumával az év utolsó napját adhatjuk meg, az előző fejezetben ismertetett módon.

| dátumok 🔽  | számok | Ŧ         |       |     |              |             |     | dátumok 🔽  | számok     | •     |       |            |            |
|------------|--------|-----------|-------|-----|--------------|-------------|-----|------------|------------|-------|-------|------------|------------|
| 2016.01.05 | 1      | bónan n   | óv 🔻  | 1   | SOM          | FOM         |     | 2013.01.26 | 1          |       |       |            |            |
| 2016.01.05 | 1      | ianuár    |       | 2   | 016.01.05    | 2016 01 22  |     | 2013.08.15 | 1          |       |       |            |            |
| 2016.01.07 | 1      | február   |       | 2   | 016.02.06    | 2016.02.06  |     | 2013.08.25 | 1          |       |       |            |            |
| 2016.01.22 | 1      | március   |       | 2   | 016 02 02    | 2016.02.00  |     | 2013.12.08 | 1          |       |       |            |            |
| 2016.02.06 | 1      | áprilie   | •     | 2   | 016 04 07    | 2016.03.00  |     | 2013.12.22 | 1          |       |       |            |            |
| 2016.03.03 | 1      | máius     |       | 2   | 016.05.16    | 2016.04.07  |     | 2014.03.17 | 1          |       |       |            |            |
| 2016.03.06 | 1      | iútius    |       | 2   | 016.03.10    | 2016.03.31  |     | 2014.04.20 | 1          | 4.4   |       | COV        | FOY        |
| 2016.04.07 | 1      | Junus     |       | 2   | 016.07.03    | 2016.07.29  |     | 2014.06.18 | 1          | ev    |       | 3012 01 20 | 2012 12 22 |
| 2016.05.16 | 1      | auguszt   | us    | 2   | 016 11 12    | 2016.08.08  |     | 2014.10.27 | 1          | 20.   | 15    | 2013.01.20 | 2015.12.22 |
| 2016.05.31 | 1      | docomb    |       | 2   | 016 12 02    | 2016.11.24  |     | 2014.12.27 | 1          | 20.   | 14    | 2013.12.08 | 2014.12.27 |
| 2016.07.03 | 1      | decenic   | e     | 2   | 010.12.05    | 2010.12.05  |     | 2015.04.06 | 1          | 20.   | 15    | 2014.12.27 | 2015.12.08 |
| 2016.07.16 | 1      |           |       |     |              |             |     | 2015.07.25 | 1          | 20.   | 10    | 2015.12.08 | 2016.09.19 |
| 2016.07.20 | 1      |           |       |     | 600          | 500         |     | 2015.09.21 | 1          |       |       |            |            |
| 2016.07.22 | 1      | negyede   | v nev |     | SUQ          | EUQ         |     | 2015.09.23 | 1          |       |       |            |            |
| 2016.07.29 | 1      | I. negye  | dev   |     | 2016.01.05   | 2016.03.06  |     | 2015.12.08 | 1          |       |       |            |            |
| 2016.08.08 | 1      | II. negy  | eaev  |     | 2016.04.07   | 2016.05.31  |     | 2016.05.01 | 1          |       |       |            |            |
| 2016.11.12 | 1      | III. negy | /edev |     | 2016.07.03   | 2016.08.08  |     | 2016.05.04 | 1          |       |       |            |            |
| 2016.11.24 | 1      | IV. negy  | edev  |     | 2016.11.12   | 2016.12.05  |     | 2016.05.09 | 1          |       |       |            |            |
| 2016.12.03 | 1      |           |       |     |              |             |     | 2016.09.19 | 1          |       |       |            |            |
|            |        |           |       |     |              |             |     |            |            |       |       |            |            |
|            |        | SOM       | =STA  | RTO | FMONTH( A[o  | dátumok] )  | EOM | =ENDOFMO   | ONTH( A[dá | itumo | ok] ) |            |            |
|            |        | SOQ       | =STA  | RTO | FQUARTER( A  | [dátumok] ) | EOQ | =ENDOFQU   | ARTER( A[  | dátur | nok]  | )          |            |
|            |        | SOY       | =STA  | RTO | FYEAR( B[dát | umok] )     | EOY | =ENDOFYE   | AR(B[dátu  | mok]  | )     |            |            |
|            |        |           |       |     |              |             | 201 |            |            |       |       |            |            |

118. ábra

az egyetlen dátumot eredményező függvények működésének szemléltetése forrás-kimutatás párosokkal

Az egyetlen dátumot eredményező függvények csoportjába tartoznak még a FIRSTDATE és a LAST-DATE függvények is, amelyek az elemzett dátumegység tárolt, legkorábbi/legkésőbbi dátumát adják eredményül. Ezzel a függvénypárossal tehát tetszőleges dátumegységet elemezhetünk, beleértve a féléveket és a heteket is. A két függvény egyetlen argumentuma a dátumokat tartalmazó mező.

| dátumok 💌  | számok | -           |     |           |   |               |              |
|------------|--------|-------------|-----|-----------|---|---------------|--------------|
| 2013.01.26 | 1      |             |     |           |   |               |              |
| 2013.08.15 | 1      | óv          | - 5 | áláv náv  | - | 50            | ID           |
| 2013.08.25 | 1      | CV          |     |           | - | 2012 01 26    | 2012 01 26   |
| 2013.12.08 | 1      | 02013       |     | 1. IEIEV  |   | 2013.01.20    | 2013.01.20   |
| 2013.12.22 | 1      |             |     | II. Telev |   | 2015.08.15    | 2015.12.22   |
| 2014.03.17 | 1      | ■ 2014      |     | I. felev  |   | 2014.03.17    | 2014.06.18   |
| 2014 04 20 | 1      |             |     | II. félév |   | 2014.10.27    | 2014.12.27   |
| 2014 06 18 | 1      | <b>2015</b> |     | I. félév  |   | 2015.04.06    | 2015.04.06   |
| 2014.00.10 | 1      |             |     | II. félév |   | 2015.07.25    | 2015.12.08   |
| 2014.10.27 | 1      | <b>2016</b> |     | I. félév  |   | 2016.05.01    | 2016.05.09   |
| 2014.12.27 | 1      |             |     | II. félév |   | 2016.09.19    | 2016.09.19   |
| 2015.04.06 | 1      |             |     |           |   |               |              |
| 2015.07.25 | 1      |             |     |           |   |               |              |
| 2015.09.21 | 1      |             |     |           |   |               |              |
| 2015.09.23 | 1      |             |     | FD        |   | =FIRSTDATE( A | A[dátumok] ) |
| 2015.12.08 | 1      |             |     | LD        |   | =LASTDATE( A  | (dátumok))   |
| 2016.05.01 | 1      |             |     |           |   |               |              |
| 2016.05.04 | 1      |             |     |           |   |               |              |
| 2016.05.09 | 1      |             |     |           |   |               |              |
| 2016.09.19 | 1      |             |     |           |   |               |              |

119. ábra a FIRSTDATE és a LASTDATE függvények működésének szemléltetése forrás-kimutatás párossal

Mint a bevezetőben említettem a dátumokat tartalmazó mező nevét a táblanévvel együtt kell megadnunk. Ha elfelejtkezünk erről az előírásról, akkor a következő hibaüzenetet kapjuk: A következő elem értéke nem állapítható meg: "<mezőnév>". Vagy nem létezik "<mezőnév>" elem, vagy nincs "<mezőnév>" nevű oszlophoz tartozó aktuális sor.

A NEXTDAY és a PREVIOUSDAY függvények az elemzett dátumot követő illetve megelőző naptári (!) nap dátumát keresik az egyetlen argumentumukkal meghatározott mezőben. Ha a tárolt dátumok között megtalálható a keresett nap, akkor a dátumát kapjuk eredményül, különben nem kapunk eredményt.

| AZ     |       | • | dátumok    | Ŧ  | számok      | Ŧ   |          |     |              |  |
|--------|-------|---|------------|----|-------------|-----|----------|-----|--------------|--|
| 1      |       |   | 2016.08.0  | 2  | 1           |     |          |     |              |  |
| 2      |       |   | 2016.08.02 | 2  | 1           | dat | tumok    |     | NEXIDAY      |  |
| 3      |       |   | 2016.08.0  | 2  | 1           | 20: | 16.08.02 | 2.  | 2016.08.03   |  |
| 4      |       |   | 2016.08.0  | 2  | 1           | 20: | 16.08.05 | j.  | 2016.08.06   |  |
| 5      |       |   | 2016.08.0  | 3  | 2           | 20: | 16.08.09 | ).  | 2016.08.10   |  |
| 6      |       |   | 2016.08.0  | 3  | 2           |     |          |     |              |  |
| 7      |       |   | 2016.08.04 | 4  | 1           |     |          |     |              |  |
| 8      |       |   | 2016.08.0  | 5  | 2           | dát | tumok    | •   | PRE_DAY      |  |
| 9      |       |   | 2016.08.0  | 6  | 1           | 20: | 16.08.03 | 3.  | 2016.08.02   |  |
| 10     | 0     |   | 2016.08.0  | 6  | 1           | 20: | 16.08.06 | j.  | 2016.08.05   |  |
| 11     | 1     |   | 2016.08.0  | 9  | 2           | 20: | 16.08.10 | ).  | 2016.08.09   |  |
| 12     | 2     |   | 2016.08.1  | 0  | 1           |     |          |     |              |  |
| 13     | 3     |   | 2016.08.1  | 0  | 1           | 1.1 |          |     |              |  |
|        |       |   |            |    |             |     |          |     |              |  |
| TDAY : | =CALC | U | LATE( COUN | T( | [dátumok] ) | ; N | EXTDA    | ( A | (dátumok] )) |  |
| DAY :  | =CALC | U | LATE( COUN | T( | [dátumok] ) | ; P | REVIOU   | SD  | AY( A[dátumo |  |

120. ábra

a NEXTDAY és a PREVIOUSDAY függvények működésének szemléltetése forrás-kimutatás párosokkal

# dátumokat adó időszak-kezelő függvények

Az egyetlen dátumot eredményül adó függvények ismertetése után tekintsük át a dátumok halmazát eredményező időszak-kezelő függvényeket.

A NEXT és a PREVIOUS függvénycsaládok tagjai az elemzett dátumegységet követő/megelőző naptári (!) dátumegység tárolt dátumait adják eredményül, ha találnak ilyen dátumokat, az egyetlen argumentumukkal megadott mezőben. Ha nincsenek ilyen dátumok, akkor nem kapunk ered-

ményt! Mindkét függvénycsalád rendelkezik hónapokat, negyedéveket és éveket vizsgáló változattal: NEXTMONTH, NEXTQUARTER, NEXTYEAR és PREVIOUSMONTH, PREVIOUSQUARTER, PREVIOUSYEAR. A függvények egyetlen argumentuma a dátumokat tartalmazó mező.



121. ábra a NEXT és a PREVIOUS függvénycsaládok működésének szemléltetése a hónapokat vizsgáló változataikkal

A DATESMTD, a DATESQTD és a DATESYTD függvények az elemzett dátum hónapjának/negyedévének/évének tárolt dátumait adják eredményül az elemzett dátumig, az elemzett dátumot is beleértve. Egyetlen argumentumuk a dátumokat tartalmazó mező.



122. ábra a DATES függvénycsalád működésének szemléltetése

A kimutatást a kép bal oldalán álló adatok elemzésére hoztuk létre. Az első három egyéni összesítés a bejegyzéssel bíró napok számát göngyölíti, az összegzést havonta (D\_MTD), negyedévente (D\_QTD) és évente (D\_YTD) újrakezdve. A negyedik összesítés a bejegyzésekhez tartozó számokat adja össze és ezt göngyölítve (ÖSSZ) jeleníti meg, az összegzést havonta újrakezdve.

A DATEADD függvény az elemzett dátumegység, egy időben eltolt előfordulásának, tárolt dátumait adja eredményül. A találati intervallum első napja az elemzett dátumegység tárolt, legkorábbi, utolsó napja pedig az elemzett dátumegység tárolt, legkésőbbi dátuma lesz. Argumentumai a dátumokat tartalmazó mező, az eltolás mértékét meghatározó előjeles, egész szám valamint az eltolás dátumegysége. Természetesen az elemzett dátumegység és az eltolás dátumegysége azonos. Választhatunk éveket, negyedéveket, hónapokat és napokat. A dátumegységet idézőjel nélkül kell a képletbe beírni: year, quartier, month és day.

A PARALLELPERIOD függvény szintén egy eltolással képzett dátumegység tárolt dátumait adja eredményül, de találati időintervalluma a dátumegység minden naptári napja. A PARALLELPERIOD függvényt használva az eltolás dátumegységének napokat nem választhatunk.



123. ábra a DATEADD és a PARALLELPERIOD függvények találati tartománya éveket vizsgálva

A képen látható példa képletei azonosak, DATEADD/PARALLELPERIOD (A[dátumok]; 1; year). Mindkét függvény az "A" tábla "dátumok" mezőjének 2015-ös dátumait vizsgálja, de amíg a PARALLEL-PERIOD az összes tárolt, 2015-ös dátumot eredményül adja, addig a DATEADD csak az április elseje és az október harmincegyedike által kijelölt időszakba esőket, a határértékeket is beleértve.

| d | látumok 🔄  | < 5 | zámok | $\mathbf{v}$ |           |   |         |    |          |
|---|------------|-----|-------|--------------|-----------|---|---------|----|----------|
|   | 2015.03.22 |     | 1     |              |           |   |         |    |          |
|   | 2015.03.22 |     | 1     |              |           |   |         |    |          |
|   | 2015.10.16 |     | 1     | 4.1          | -1-       | _ |         | D  |          |
|   | 2015.11.01 |     | 1     | ev           | ек<br>1.С | - | DA_YEA  | ĸ  | PP_TEAK  |
|   | 2015.11.02 |     | 1     | 20           | 16        |   | 1       |    | 6        |
|   | 2015.11.18 |     | 1     | 20           | 1/        |   | 2       |    | 4        |
|   | 2015.12.09 |     | 1     |              |           |   |         |    |          |
|   | 2016.01.08 | Τ   | 1     |              |           | 1 |         |    |          |
|   | 2016.05.04 | Τ   | 1     |              |           | 1 | DA_YEAK | =0 | OUNTROWS |
|   | 2016.07.17 |     | 1     |              |           |   | PP_YEAK | =0 | OUNTROWS |
|   | 2016.08.29 | T   | 1     |              |           |   |         |    |          |
|   | 2017.06.02 | Τ   | 1     |              |           |   |         |    |          |
|   | 2017.10.03 |     | 1     |              |           |   |         |    |          |
|   | 2017.11.29 |     | 1     |              |           |   |         |    |          |



Az ábrán látható példában a 2016-os év legkorábbi illetve legkésőbbi dátuma január nyolc és augusztus huszonkilenc. Ebbe az időintervallumba egyetlen 2015-ös dátum esik: a március huszonkettő. Tehát a DATEADD függvény egyetlen dátumot eredményezett, a PARALLELPERIOD viszont az öszszes előforduló 2015-ös dátumot, azaz hat dátumot adott eredményül.

Negyedéveket elemezve a DATEADD függvény már csak hónap pontossággal dolgozik. A következő ábra ezt a működést mutatja be. A kimutatás "EH" és "UH", azaz az első hónap és az utolsó hónap nevű egyéni összesítése, a vizsgált negyedév tárolt, legkorábbi és legkésőbbi dátuma hónapjának sorszámát mutatja a negyedéven belül.

| AZ  | dátumok    | számo | k    |               |                                         |           |             |  |  |  |
|-----|------------|-------|------|---------------|-----------------------------------------|-----------|-------------|--|--|--|
| 001 | 2017.01.12 | 1     |      | n évek 🕝      | EH                                      | UH        | DA Q        |  |  |  |
| 002 | 2017.02.01 | 1     |      | I. negyedév   | 1                                       | 3         |             |  |  |  |
| 003 | 2017.03.19 | 1     |      | II. negvedév  | 1                                       | 2         | 2           |  |  |  |
| 004 | 2017.03.26 | 1     |      | III. negyedév | 2                                       | 3         | 3           |  |  |  |
| 005 | 2017.04.28 | 1     |      | IV. negvedév  | 3                                       | 3         | 1           |  |  |  |
| 006 | 2017.04.29 | 1     |      |               |                                         |           |             |  |  |  |
| 007 | 2017.05.11 | 1     |      | =MONTH( FI    | RSTDATE( D                              | Oľdátumok | 1)) - ( ROU |  |  |  |
| 008 | 2017.05.19 | 1     | EH   | ( MONTH( FI   | (MONTH(EIRSTDATE(D[datumok]))/3.0)-1)*3 |           |             |  |  |  |
| 009 | 2017.05.20 | 1     |      |               | STDATE/ DI                              | (dátumok) |             |  |  |  |
| 010 | 2017.08.09 | 1     | UH   |               |                                         |           |             |  |  |  |
| 011 | 2017.08.29 | 1     |      | (MONTH(LA     | STDATE( D                               | [datumok] | ))/3;0)-    |  |  |  |
| 012 | 2017.09.12 | 1     | DA_Q | =COUNTROW     | VS( DATEAD                              | D( D[dátu | mok] ;-1;   |  |  |  |
| 013 | 2017.12.19 | 1     |      |               |                                         |           |             |  |  |  |
| 014 | 2017 12 27 | 1     |      |               |                                         |           |             |  |  |  |

125. ábra a DATEADD függvény működése negyedéveket vizsgálva

Az "EH" és "UH" egyéni összesítések képletében szereplő ROUNDUP függvény működése és szintaktikája azonos a program KEREK.FEL (ROUNDUP) függvényével.

A kimutatás forrását vizsgálva látjuk, hogy a negyedik negyedévben csak a negyedév utolsó hónapjába eső dátumok állnak. A DATEADD függvény tehát a harmadik negyedév utolsó hónapjába eső dátumokat adja eredményül, azaz egyetlen dátumot. A forrás harmadik negyedévében a második és a harmadik hónapra esnek a dátumok, tehát a DATEADD a második negyedév második és harmadik hónapjának dátumait eredményezi, azaz a májusi és a júniusi dátumokat. Ebben a két hónapban csak három májusi dátumot találunk. És így tovább.

Ahogy láttuk, a DATEADD függvény működése az elemzett dátumegység legkorábbi és legkésőbbi, tárolt dátumán alapszik. Amennyiben a vizsgált időszakban csak egyetlen dátum fordul elő, akkor ez a nap kerül eltolásra és csak az így képzett dátummal azonos, tárolt dátum lesz a függvény eredménye. Ha nincs a vizsgált mezőben ilyen dátum, akkor a függvény nem ad eredményt. Hónapokat elemezve és legalább két, tárolt dátumot feltételezve a két függvény már azonos eredményt ad.

Meghatározott kimutatás-elrendezésben problémát okoz a DATEADD függvény eredménytelensége. Erre a problémára a bővítmény "A következő függvény csak egybefüggő dátumtartományokkal használható: DATEADD" hibaüzenettel figyelmeztet vagy statisztikai értékek nélküli kimutatást jelenít meg.

| dátumok 💌  | számok 🛛 💌 |          |                                        |      |
|------------|------------|----------|----------------------------------------|------|
| 2016.01.01 | 1          |          | $\sim$                                 |      |
| 2016.01.20 | 1          |          |                                        |      |
| 2016.01.22 | d.egységek | DA_MONTH |                                        |      |
| 2016.02.09 | = 2016     |          |                                        |      |
| 2016.02.11 | jan.       | 2        |                                        |      |
| 2016.03.05 | febr       | . 3      |                                        |      |
| 2016.03.07 | máj.       | . 2      | SOROK Σ ÉRTÉKEK                        |      |
| 2016.03.08 | = 2017     |          |                                        |      |
| 2016.05.07 | ápr.       | 1        | év 🔻 DA_MONTH                          | •    |
| 2016.05.16 | szep       | ot. 2    | hónap név rövidítve 🔻                  |      |
| 2016.06.06 | okt.       | 3        |                                        |      |
| 2016.06.30 | 1          |          |                                        |      |
| 2017.02.08 | 1          |          | Elrendezésfrissítés elhalasztása FRISS | ITES |
| 2017.04.05 | 1          | 1        |                                        |      |
|            |            |          |                                        |      |

DA\_MONTH =COUNTROWS( DATEADD( A[datumok] ; 1 ; month ))

126. ábra

hibát eredményező elrendezés a DATEADD függvény hónapos változatát használva

Az ábrán látható forrás-kimutatás páros a DATEADD függvény működését szemlélteti hónapokat elemezve. A kimutatás két sormezője a naptár-tábla "év" és "hónap név rövidítve" mezője. Ha a

hónapokat oszlopokként szeretnénk megjeleníteni és a mezőt áthelyezzük az oszlopterületre, akkor az eredménytelen cellák a fent említett hibát okozzák. A problémát az egyéni összesítés képletének módosításával orvosolhatjuk.

=IF( HASONEVALUE( 'naptár'[év] ); COUNTROWS( DATEADD( A[dátumok]; 1; month )))

127. ábra az egyéni összesítés módosított képlete

A képlet HASONEVALUE függvényének egyetlen argumentuma a vizsgált dátumegységet tartalmazó tábla és mezőnév, eredménye logikai érték. A függvény megállapítja, hogy az egyéni összesítés az adott kimutatás-pozícióban egyetlen értéket eredményez-e vagy sem. Ha igen, eredménye IGAZ, ha nem, HAMIS eredményt kapunk. A függvény egyenértékű a COUNTROWS( VALUES ( [mezőnév] )) = 1 kifejezéssel. A DAX VALUES függvénye egy mező egyedi értékeit adja eredményül. Mint már láttuk az IF függvény harmadik argumentuma elhagyható. Ha hiányzik és a függvény feltétel-argumentumának kiértékelése HAMIS logikai értéket eredményez, akkor az IF üres eredményt ad. Összefoglalva: a képlet módosításával elértük, hogy eredménytelen kiértékelések helyett üres bejegyzéseket kapjunk, így a statisztikai értékek már összefüggő tartományt képeznek a kimutatásban.

A SAMEPERIODLASTYEAR függvény az elemzett év tárolt legkorábbi és tárolt legkésőbbi dátuma által meghatározott időszak tárolt dátumait adja eredményül, a határnapokat is beleértve a vizsgált évet megelőző évből. Tehát azonos a DATEADD ( <dátumok> ; -1 ; year ) kifejezéssel.

A DATESINPERIOD függvény egy dátum és időben eltolt megfelelője által meghatározott időszak dátumait keresi az első argumentumával meghatározott dátumok között és a megtalált dátumokat adja eredményül a határnapokat is beleértve. A bázis-dátum deklarálására a függvény második argumentuma szolgál. Az eltolás mértékét jelentő előjeles egész számot és az eltolás dátumegységét a függvény harmadik és negyedik argumentumával adhatjuk meg. Utóbbi év, negyedév, hónap és nap lehet, angolul deklarálva: year, quarter, month és day.

| AZ   | dátumok    | számok | hónapok 🔻  | DIP_DAY       |                                                 |
|------|------------|--------|------------|---------------|-------------------------------------------------|
| 0001 | 2016.02.01 | 1      | = 2016     |               |                                                 |
| 0002 | 2016.02.15 | 1      | márc.      | 5             |                                                 |
| 0003 | 2016.02.16 | 1      | ápr.       | 2             |                                                 |
| 0004 | 2016.02.26 | 1      | máj.       | 4             |                                                 |
| 0005 | 2016.02.27 | 1      | jún.       | 1             |                                                 |
| 0006 | 2016.02.29 | 1      |            |               |                                                 |
| 0007 | 2016.03.02 | 1      | DIP_DAY    | =CALCULATE(   | SUM( A[számok] ) ;                              |
| 8000 | 2016.03.03 | 1      |            | DATESINPER    | lIOD( A[dátumok] ; "2016.03.02." ; 100 ; day )) |
| 0009 | 2016.03.06 | 1      | utolsó nap | 2016.06.10. ( | ="16/3/2" + 100 )                               |
| 0010 | 2016.03.14 | 1      |            |               |                                                 |
| 0011 | 2016.03.24 | 1      |            |               |                                                 |
| 0012 | 2016.04.18 | 1      | évek 🔻     | DIP_YEAR      |                                                 |
| 0013 | 2016.04.30 | 1      | 2016       | 35            |                                                 |
| 0014 | 2016.05.08 | 1      | 2017       | 55            |                                                 |
| 0015 | 2016.05.15 | 1      | 2018       | 55            |                                                 |
| 0016 | 2016.05.20 | 1      | 2019       | 12            |                                                 |
| 0017 | 2016.05.25 | 1      |            |               |                                                 |
| 0018 | 2016.06.01 | 1      | DIP_YEAR   | =CALCULATE(   | SUM( A[szàmok] ) ;                              |
| 0019 | 2016.06.15 | 1      |            | DATESINPER    | NOD( A[dátumok] ; "2016.03.02." ; 3 ; year ))   |
| 0020 | 2016.06.22 | 1      | utolsó nap | 2019.03.02. ( | =DATUM( 2016 + 3 ; 3 ; 2 )                      |

128. ábra

a DATESINPERIOD függvény működésének szemléltetése nap és év dátumegység-argumentumokkal

Az ábrán az utolsó nap dátumát kiszámító képletek természetesen a program képletei! Az egyéni összesítés képletének bevitele után megjelenő "A DatesBetween és a DatesInPeriod függvény csak dátumoszlop hivatkozását fogadja el első argumentumként" hibaüzenet a dátumok-argumentumban hiányzó táblanévre figyelmeztet. A DATESINPERIOD függvény második argumentuma tehát a keresett dátumukat tartalmazó időszak első napja, amelyet szabadon határozhatunk meg, az utolsó napot már a bővítmény számolja ki a függvény harmadik és negyedik argumentuma alapján. A DATESBETWEEN függvény szintén egy időszak, tárolt dátumait adja eredményül, de ennél a függvénynél már az időszak utolsó napját is szabadon határozhatjuk meg. Három argumentuma sorrendben, a dátumokat tartalmazó mező, az időszak első napjának és az időszak utolsó napjának deklarálására szolgál.

# az időszak-kezelő függvények rendszerezése

A könnyebb megjegyezhetőség érdekében, osztályozzuk a megismert függvényeket közös jellemzőik alapján. Egy tényt az összes időszak-kezelő függvényről elmondhatunk: mind meghatározott dátumot vagy dátumokat keres egy mezőben, de némelyik nem a dátumot adja eredményül, hanem a dátumokat tartalmazó rekordokban elvégzi a felhasználó által előírt műveleteket.

Utóbbi csoportba tartozik OPENINGBALANCE, a CLOSINGBALANCE és a TOTAL függvénycsalád. Az OPENINGBALANCE függvény az elemzett dátumot megelőző, a CLOSINGBALANCE és a TOTAL az elemzett dátum dátumegységét vizsgálják. Az OPENINGBALANCE és a CLOSINGBALANCE család tagjai a dátumegység legkésőbbi dátumát, a TOTAL függvénycsalád tagjai a dátumegység összes tárolt dátumát az elemzett dátumig bezárólag, tartalmazó rekordokat dolgozzák fel. Mindhárom függvénycsaládnak van hónapos, negyedéves és éves változata. Mivel alapvetően a napok vizsgálatára szolgáló függvényekről van szó, naptár-tábla nélkül is használhatók.

| függvé<br>neve | ny       | elemzett<br>dátumegység | v. dátumegység<br>pozíciója | vizsgált<br>dátumegység | keresett<br>dátum                   |  |
|----------------|----------|-------------------------|-----------------------------|-------------------------|-------------------------------------|--|
|                | -MONTH   |                         | elemzett                    | hónap                   |                                     |  |
| OPENINGBALANCE | -QUARTER |                         | napot tartalmazót           | negyedév                | logkácőbbi                          |  |
|                | -YEAR    |                         | megelőző                    | év                      |                                     |  |
|                | -MONTH   |                         |                             | hónap                   | legkesobbi                          |  |
| CLOSINGBALANCE | -QUARTER | nap                     |                             | negyedév                | -                                   |  |
|                | -YEAR    |                         | elemzett                    | év                      |                                     |  |
|                | -MONTH   |                         | tartalmazót                 | hónap                   |                                     |  |
| TOTAL          | -QUARTER |                         |                             | negyedév                | előfordulók<br>elemzettel bezárólag |  |
|                | -YEAR    |                         |                             | év                      | elemzettel bezal olag               |  |

129. ábra a kifejezés-kiértékelő időszak-kezelő függvények

Amit fontos megjegyeznünk: az OPENINGBALANCE függvénycsalád az elemzett napot megelőző hónap/negyedév/év tárolt, legkésőbbi dátumát tartalmazó rekordokat dolgozza fel.

A további időszak-kezelő függvények dátumot vagy dátumokat adnak eredményül. Először tekintsük át az egyetlen dátumot eredményező függvényeket.

| függ<br>ne  | vény<br>ve | elemzett és vizsgált<br>dátumegység | keresett<br>dátum   |  |  |
|-------------|------------|-------------------------------------|---------------------|--|--|
|             | -MONTH     | hónap                               |                     |  |  |
| STARTOF     | -QUARTER   | negyedév                            | legkorábbi          |  |  |
|             | -YEAR      | év                                  |                     |  |  |
|             | -MONTH     | hónap                               |                     |  |  |
| ENDOF       | -QUARTER   | negyedév                            | legkésőbbi          |  |  |
|             | -YEAR      | év                                  |                     |  |  |
| FIRSTDATE   |            | hét/hónap/negyedév/                 | legkorábbi          |  |  |
| LASTDATE    |            | félév/év                            | legkésőbbi          |  |  |
| NEXTDAY     |            |                                     | elemzettet követő   |  |  |
| PREVIOUSDAY |            | пар                                 | elemzettet megelőző |  |  |

130. ábra egyetlen dátumot eredményező időszak-kezelő függvények

Az ábra tanulsága szerint ezek a függvények az elemzett dátumegységet vizsgálják és a NEXTDAY és a PREVIOUSDAY függvényeket leszámítva, az elemzett dátumegység tárolt legkorábbi illetve legkésőbbi dátumát adják eredményül.

A dátumok halmazát eredményező időszak-kezelő függvények a vizsgált időintervallumban előforduló dátumokat adják eredményül. Kivétel a napok elemzésére szolgáló DATES függvénycsalád, amely az elemzett napot tartalmazó dátumegység tárolt dátumait adja eredményül az elemzett nappal bezárólag.

A dátumok-halmazát eredményező függvények között is találunk hetek és félévek elemzésére is alkalmas függvényeket: DATESINPERIOD, DATESBETWEEN.

A DATEADD és a PARALLELPERIOD függvényekkel az elemzett dátumegység egy időben eltolt megfelelőjét vizsgálhatjuk. Ez lehet az elemzett dátumegységet megelőző/követő, tetszőleges sorszámú dátumegység.

A DATESINPERIOD függvény a vizsgált időszak első napjának, a DATESBETWEEN függvény az első és utolsó napjának, dátumegységektől független megadását teszik lehetővé.

| függv<br>nev      | /ény<br>/e | elemzett<br>dátumegység | v. dátumegység<br>pozíciója | vizsgált<br>dátumegység         | keresett<br>dátum    |  |
|-------------------|------------|-------------------------|-----------------------------|---------------------------------|----------------------|--|
|                   | -MONTH     | hónap                   |                             | hónap                           |                      |  |
| NEXT              | -QUARTER   | negyedév                | elemzettet                  | negyedév                        |                      |  |
|                   | -YEAR      | év                      | KOVELO                      | év                              | előfordulók          |  |
|                   | -MONTH     | hónap                   |                             | hónap                           |                      |  |
| PREVIOUS          | -QUARTER   | negyedév                | elemzettet                  | negyedév                        |                      |  |
|                   | -YEAR      | év                      | megelozo                    | év                              |                      |  |
|                   | -MTD       |                         | elemzett                    | hónap                           | 1// 1.1/1            |  |
| DATES             | -QTD       | nap                     | napot                       | negyedév                        | elofordulok          |  |
|                   | -YTD       |                         | tartalmazó                  | év                              | elemzettel Dezalolag |  |
| DATEADD           |            | nap/hónap/negyedév/év   | -  4 -  4                   | elemzettel megegyező, szűkített |                      |  |
| PARALLELPERIC     | D          | hónap/negyedév/év       | eitoit                      | elemzettel megegyező            |                      |  |
| SAMPERIODLASTYEAR |            | év                      | előző                       | év, szűkített                   | előfordulók          |  |
| DATESINPERIOD     |            | hét/hónap/negyedév/     | határnapokkal               | elemzettel                      | 1                    |  |
| DATESBETWEEN      | I          | félév/év                | megadott                    | megegyező                       |                      |  |

131. ábra dátumok halmazát eredményező időszak-kezelő függvények

Miután a függvényeket eredményük szerinti csoportosításban rendszereztük, keressünk más, az osztályozásra alkalmas közös tulajdonságokat!

A TOTAL és a DATES függvénycsalád rokonsága szembeötlő, nemcsak tagjaik elnevezése, de az elemzendő és a vizsgált dátumegységeik is azonosak, sőt a keresett dátumok is megegyeznek.

| függvény<br>neve |      | elemzett<br>dátumegység | v. dátumegység<br>pozíciója | v. dátumegység vizsgált<br>pozíciója dátumegység |             | függvény<br>eredménye |  |
|------------------|------|-------------------------|-----------------------------|--------------------------------------------------|-------------|-----------------------|--|
|                  | -MTD |                         |                             | hónap                                            |             | kifejezés             |  |
| TOTAL            | -QTD |                         | _                           | negyedév                                         |             |                       |  |
|                  | -YTD | 222                     | elemzett                    | év                                               | előfordulók | creamenye             |  |
|                  | -MTD | пар                     | tartalmazó                  | hónap                                            | bezárólag   | dátumok               |  |
| DATES            | -QTD |                         |                             | negyedév                                         | bezarolag   |                       |  |
|                  | -YTD |                         |                             | év                                               |             |                       |  |

132. ábra

a TOTAL és a DATES függvénycsalád összehasonlítása

Tehát mindkét függvénycsalád tagjai az elemzett napot tartalmazó dátumegység dátumait gyűjtik össze az elemzett nappal bezárólag. A különbség csupán annyi, hogy a TOTAL függvények a megtalált dátumokat tartalmazó rekordokban kiértékelik az argumentumukkal meghatározott kifejezést, a DATES függvények pedig a megtalált dátumokat adják eredményül.

# idő-kezelő függvények

A DAX, akárcsak az Excel nem ismeri a negatív idő (-3:04) fogalmát. A táblák számított mezőiben a bővítmény az időpontok/időtartamok tizedes tört megfelelőjével számol és az eredményt előjel nélkül jeleníti meg (3:04). A megjelenítést szó szerint kell érteni, mert egy másik számított mezővel le tudjuk kérdezni az eredmény előjelét: SIGN( <eredmény> ). A bővítmény SIGN függvénye funkciójában és szintaktikájában azonos a program ELŐJEL (SIGN) függvényével.

|   | [ELŐJEL]      | <b>•</b>  | $f_{\mathcal{K}} = \text{SIGN}(\text{ELT})$ |             |            |
|---|---------------|-----------|---------------------------------------------|-------------|------------|
|   | dátum 💽       | érkezés 💽 | távozás  💌                                  | ELTÉRÉS 🛛 💌 | ELŐJEL 🛛 🔽 |
| 1 | 2016. 02. 18. | 8:02      | 17:51                                       | 1:19        | 1          |
| 2 | 2016. 02. 19. | 9:06      | 17:36                                       | 0:00        | 0          |
| 3 | 2016_02_22.   | 9:52      | 16:39                                       | 1:43        | -1         |



A tábla ELTÉRÉS számított mezőjének képlete: =[távozás] - [érkezés] - "8:30". A bővítmény Dátum adattípust állít be az eredményeknek. Az ELŐJEL számított mező eredménye 1, ha az ELTÉRÉS mező tizedes tört "eredménye" pozitív, o ha nulla és -1, ha negatív.

Ha az ELTÉRÉS-t kimutatással összegezni szeretnénk, akkor a mező adattípusát Tizedes törtre kell átállítanunk, mert dátum adattípusú mező összesítéséhez SUM függvényt nem használhatunk.

Nézzünk egy példát az időtartalmak összesítésére! Egy vállalat munkatársai kötetlen munkaidőben dolgoznak. A munkaidő nyolc és fél óra. A táblában az "ELTÉRÉS" számított mezővel képeztük a munkahelyen ténylegesen eltöltött és az elvárt időtartam különbségét. Ezt fogjuk havi bontásban összesíteni a kimutatásban.

|   | [ELTÉRÉS]      |           | = ROUND( [tá | vozás] - [érkezé | )       |    |       |       |
|---|----------------|-----------|--------------|------------------|---------|----|-------|-------|
|   | dátum 🔽        | érkezés 🔽 | távozás 🛛 💌  | ELTÉRÉS 🔽        | ELŐJEL  |    |       |       |
| 1 | 2016. 02. 18.  | 8:02      | 17:51        | 0,055            | hónapok | -  | ÖSSZ  | hiány |
| 2 | 2016. 02. 19.  | 9:06      | 17:36        | 0                | febr.   |    | 00:30 | hiány |
| 3 | 2016. 02. 22.  | 9:52      | 16:39        | -0,072           | márc.   |    | 07:22 |       |
| 4 | 2016. 02. 23.  | 9:32      | 18:26        | 0,017            | ápr.    |    | 00:25 | hiány |
| 5 | 2016 02 24     | 9:22      | 18:55        | 0.044            | maj.    |    | 00:30 |       |
| - | 2016 02 25     | 0.50      | 16-12        | -0.09            | vegossz | eg | 06:56 |       |
| 0 | 20,18-112, 25. | 9:52      | 10:15        | -0,09            |         |    |       |       |
|   |                |           | -            |                  |         |    |       |       |

ossz =ABS( SUM( [ELTERES] )) hiány =IF( SIGN( SUM( [ELTÉRÉS] )) = -1 ; "hiány" )

134. ábra a "negatív" időtartam kezelésének bemutatása, tábla-kimutatás párossal

A feladatot két egyéni összesítéssel oldjuk meg. Az elsővel képezzük az időtartamok "előjel" nélküli összegét, a másodikkal pedig az "előjelet". Az "össz"-ben szereplő ABS függvény működése azonos a program ABS függvényével, funkciója a negatív időpontartamok kialakulásának megakadályozása.

A DAX hat időkezelő függvénnyel rendelkezik. Az operációs rendszer által szolgáltatott, aktuális időpontot a NOW függvénnyel vihetjük be a képletbe. Az időpont a tábla frissítésekor aktualizálódik. Az egyéni összesítés képletében álló NOW aktualizálásához a kimutatást is frissíteni kell!

A HOUR, a MINUTE és a SECOND függvények egy időpont/időtartam óráinak, perceinek és másodperceinek számát adják eredményül. Működésük megegyezik a program ÓRA, PERC és MPERC függvényeinek működésével. Egyetlen argumentumuk az időpont/időtartam meghatározására szolgál. Ezek a függvények az adatok dátum részét, illetve az őket megtestesítő tizedes törtek egész részét nem veszik figyelembe.

Ez utóbbi körülmény elgondolkodtató: hogyan tudunk akkor időtartamokat összegezni, ha az összeg meghaladja az egyet? A megoldás a szám egész részének és tört részének önálló feldolgozása.

Ha például az "idő" mező bejegyzéseit szeretnénk összegezni és az eredményt "órák:percek" formátumban megjeleníteni, akkor az egyéni összesítés képlete a következő. ÓP: =TRUNC( SUM ( [idő] ) \* 24 ) & ":" & MINUTE ( SUM( [idő] )). Ezt a képletet kell egy elágazásba ágyaznunk, hogy az adatokkal nem rendelkező dátumegységekben ne jelenjenek meg a kettőspontok: =IF( TRUNC( SUM( [idő] )) > 0 ; ÓP ). A bővítmény TRUNC függvénye működésében és szintaktikájában azonos a program CSONK függvényével.

A TIME függvénnyel időpontokat/időtartamokat képezhetünk az időegységek számának megadásával. Három argumentuma sorrendben az órák, a percek és a másodpercek számát meghatározó konstans, mezőnév vagy kifejezés.

A TIMEVALUE függvény az egyetlen argumentumával meghatározott karakterláncból időpontot képez. Például: =TIMEVALUE( A[óra] & ":01:01"). A TIMEVALUE függvénnyel kapcsolatban tudnunk kell: a szöveg adattípusú időpontokat a DAX automatikusan dátum adattípussá konvertálja, ha azt a feldolgozás megköveteli.

# információs függvények

Az első négy információs függvénnyel adattípus-ellenőrzést végezhetünk. A függvények egyetlen argumentuma egy mező vagy egy kifejezés, eredményük logikai érték.

|           | szöveg | logikai | pénznem | szám | dátum | üres |
|-----------|--------|---------|---------|------|-------|------|
| ISTEXT    | IGAZ   |         |         |      |       |      |
| ISNONTEXT |        | IGAZ    | IGAZ    | IGAZ | IGAZ  | IGAZ |
| ISLOGICAL |        | IGAZ    |         |      |       |      |
| ISNUMBER  |        |         | IGAZ    | IGAZ | IGAZ  |      |

135. ábra az adattípus-ellenőrzés függvényei és eredményük, a vizsgált elem adattípusa szerint

Az adattípus ellenőrzésén felül a számok páros vagy páratlan voltára is rákédezhetünk az ISEVEN illetve az ISODD függvényekkel.

A táblázat üres cellái HAMIS eredményt jelentenek. Ahogy látjuk az ISNONTEXT függvény üres bejegyzést tartalmazó mező vagy üres eredményt adó kifejezés vizsgálatakor is IGAZ eredményt ad!

Az ISERROR függvény hibák detektálását teszi lehetővé. Egyetlen argumentuma a vizsgálandó mező vagy az ellenőrizendő kifejezés. Eredménye logikai érték.

|        |        | 🖌 A szám    |   | B szám 🛛 💌 |          | hányados 占 | • | APERB 🗾 | HIBAE 🗾 |
|--------|--------|-------------|---|------------|----------|------------|---|---------|---------|
|        |        | 4           |   | 1          |          | n          |   |         | HAMIS   |
| A szám | B szám | hányados    |   |            |          | •          |   |         |         |
|        | 1      | 0           |   | 0          | ) #      | #DIV/0!    |   |         | HAMIS   |
|        | 0      | #ZÉRÓOSZTÓ! |   |            | ŧ        | #DIV/0!    |   |         | HAMIS   |
|        |        | #ZÉRÓOSZTÓ! | 0 | 1          | LO       | D          |   | 0       | HAMIS   |
| 0      | 1      | 0           | • |            | <b>.</b> |            |   | N - N   | 1047    |
| 0      | 0      | #ZÉRÓOSZTÓ! | U | U          | , +      | #010/01    | _ | INAIN   | IGAZ    |
| 0      |        | #ZÉRÓOSZTÓ! | 0 |            | ŧ        | #DIV/0!    |   | NaN     | IGAZ    |
| 1      | 1      | 1           | 1 | 1          | L   1    | 1          |   | 1       | HAMIS   |
| 1      | 0      | #ZÉRÓOSZTÓ! | 1 | 0          | ) #      | #DIV/0!    |   |         | IGAZ    |
| 1      |        | #ZÉRÓOSZTÓ! | 1 |            | #        | #DIV/0!    |   | 00      | IGAZ    |



136. ábra

az ISERROR függvényt bemutató tábla, forrásával és számított mezőinek képleteivel

A táblában megjelenő NaN (Not a Number) bejegyzés jelentése: nem szám. Annak ellenére, hogy a bővítmény a  $m^{\infty}$  és a  $m^{NaN}$  bejegyzéseket nem hibaként jeleníti meg, az ISERROR függvény

hibaként detektálja őket. A hibaértékeket a PowerPivot az Excel-ben megszokott módon jelöli: #SZÁM, #ÉRTÉK.

Az ISBLANK és az ISEMPTY függvények az "üres-e" kérdésre adnak választ. Az ISBLANK függvény egy üres bejegyzés, üres statisztikai érték vagy eredményt nem adó kifejezés detektálására szolgál: ha az egyetlen argumentumával meghatározott objektum üres, akkor eredménye IGAZ, különben HAMIS. Az ISEMPTY függvénnyel táblát vagy táblát eredményező kifejezést vizsgálhatunk. A rekordok nélküli tábla IGAZ, a rekordokkal rendelkező HAMIS eredményt ad. A függvény eredménye egyenértékű a COUNTROWS( <tábla> ) = o logikai kifejezés eredményével.



137. ábra az ISBLANK és az ISEMPTY függvények bemutatása

A kép bal oldalán álló táblázat a "C" nevű tábla forrása, amelynek elemzésére két kimutatást hoztam létre. Először egy automatikus összesítéssel, "Elemszám - AZ", megállapítottam a havi tételszámot. A bejegyzések nélküli, tehát a nulla tételszámú hónapokat, csak egyéni összesítéssel tudtam megjeleníteni. Ez a TSZÁM, amelyben az ISBLANK függvény szolgáltatja a logikai értéket az IF függvény feltétel-argumentumának.

A VNAGY egyéni összesítéssel azt vizsgáltam volt-e az adott hónapban ötnél nagyobb szám. A képletében álló ISEMPTY függvény ellenőrzi üres-e a FILTER függvény által eredményül adott tábla, majd a kapott logikai értéket a NOT függvény cseréli le az ellentétjére. A DAX és a program NEM függvénye azonos funkciójú és szintaktikájú.

A CONTAINS függvény a "létezik-e" kérdésre ad választ. Van-e a vizsgált táblának, a függvény argumentumaival meghatározott rekordja? A függvény első argumentuma a vizsgált táblát deklarálja. További argumentumai párban állnak: mezőnév-bejegyzés. Tehát a kérdés pontosan: létezik-e olyan rekord, amelynek felsorolt mezőiben a felsorolt bejegyzések állnak?

|       |   | 2       | érték | osztály | kategória | dátum      | AZ |
|-------|---|---------|-------|---------|-----------|------------|----|
|       |   |         | 35    | 1       | В         | 2017.01.08 | 01 |
|       |   |         | 88    | 2       | A         | 2017.01.11 | 02 |
|       |   |         | 16    | 5       | с         | 2017.01.19 | 03 |
|       |   |         | 22    | 3       | A         | 2017.02.05 | 04 |
| c3    | - | hónapok | 19    | 3       | с         | 2017.02.18 | 05 |
| HAMIS |   | jan.    | 69    | 3       | A         | 2017.02.28 | 06 |
| IGAZ  |   | febr.   | 86    | 4       | С         | 2017.03.24 | 07 |
| HAMIS |   | márc.   | 26    | 3       | A         | 2017.04.17 | 08 |
| IGAZ  |   | ápr.    | 53    | 3       | с         | 2017.04.21 | 09 |
| HAMIS |   | mái.    | 27    | 3       | A         | 2017.05.01 | 10 |
|       |   | 1000    | 83    | 2       | A         | 2017.05.15 | 11 |

c3 =IF( COUNTROWS( D ) > 0; CONTAINS( D; [kategória]; "C"; [osztály]; 3))

138. ábra a CONTAINS függvény bemutatása forrás-kimutatás párossal

A képen látható táblázat a "D" tábla forrása. A tábla elemzésére létrehozott kimutatás "c3" egyéni összesítése, azt vizsgálja, létezik-e C3-as tétel az adott hónapban. A CONTAINS függvény argumentumaiban álló konstansok relációja egyenlő (=), de ezt nem kell jeleznünk. A függvény "szűrőfeltételei", azaz a mezőnév-bejegyzés párosai logikai ÉS viszonyban állnak egymással. Az IF függvény nélkül az egyéni összesítés a tételeket nem tartalmazó hónapok HAMIS értékét is megjelenítené.

A három-argumentumos ISONORAFTER függvény az első két argumentumát hasonlítja össze a harmadik argumentumával deklarált relációt alkalmazva. Két lehetőséggel élhetünk: [1] az első argumentum "nagyobb vagy egyenlő", mint a második argumentum, [2] az első argumentum "kisebb vagy egyenlő", mint a második argumentum.

| reláció                    | jelzése a névkiegészítőben | alternatív jelölés |
|----------------------------|----------------------------|--------------------|
| argumentum₁ >= argumentum₂ | ASC                        | 1, TRUE            |
| argumentum₁ <= argumentum₂ | DESC                       | o,FALSE            |

139. ábra az ISONORAFTER függvény harmadik argumentuma

A névkiegészítő által felajánlott ASC és DESC karakterláncok félrevezetőek, mert ezek a rendezés parancsszavai a számítástechnikában. Használjuk inkább a nulla és az egy jelöléseket. A harmadik argumentum elhagyható, ebben az esetben a nagyobb egyenlő reláció kerül alkalmazásra. A fentiekből következik, hogy a ISONORAFTER( [szám1]; [szám2]; 0) képlet eredménye azonos az ISON-ORAFTER( [szám1]) képlet eredményével.

|   | [VIZSGÁLAT | LAT] 🔻 $f_{sc}^{*}$ =ISONORAFTER( [szám1] ; [szám2] ) |         |           |                   |  |
|---|------------|-------------------------------------------------------|---------|-----------|-------------------|--|
| 4 | AZ 🔽       | szám1 💽                                               | szám2 💽 | VIZSGÁLAT | Oszlop hozzáadása |  |
| 1 | 01         | 1                                                     | 0       | IGAZ      |                   |  |
| 2 | 02         | 0                                                     | 1       | HAMIS     | (                 |  |
| 3 | 03         | 1                                                     | 1       | IGAZ      |                   |  |
|   |            |                                                       | <       | ~         |                   |  |

140. ábra példa az ISONORAFTER függvény alkalmazására

Az üres bejegyzések az összehasonlításban a nullánál kisebb, de a negatív számoknál nagyobb "számnak" minősülnek. A függvény szövegeket vizsgálva furcsa eredményt ad. Lássunk egy példát!

|   | [VIZSGÁLAT] | <ul> <li></li></ul> | 🖌 =ISONORAFTER( [gyümölcs] ; "Banán" ) |                   |  |  |
|---|-------------|---------------------|----------------------------------------|-------------------|--|--|
| 1 | AZ 🔽        | gyümölcs 💽          | VIZSGÁLAT 🗾 🔽                          | Oszlop hozzáadása |  |  |
| 1 | 01          | körte               | IGAZ                                   |                   |  |  |
| 2 | 02          | szilva              | IGAZ                                   |                   |  |  |
| 3 | 03          | barack              | IGAZ                                   |                   |  |  |
| 4 | 04          | alma                | HAMIS                                  |                   |  |  |
|   |             | ~ ~                 |                                        |                   |  |  |

141. ábra az ISONORAFTER függvény működése szöveget vizsgálva

A VIZSGÁLAT mező képletében alkalmazott reláció a "nagyobb egyenlő". Mi nagyobb vagy egyenlő a körtében, a szilvában és a barackban a banánnál?! Szabad a gazda? A kezdőbetű. A függvény tehát csak a szövegek első karakterét vizsgálta: a kezdőbetű azonos-e a viszonyítási alap első betűjével vagy az ABC-ben utána áll-e. A példából az is leszűrhető, hogy a függvény a kis- és nagybetűket nem különbözteti meg. A függvény az üres bejegyzést az ABC-ben az A betű előtt álló "karakternek" tekinti.

A két-argumentumos KEYWORDMATCH függvény argumentumainak azonosságát vizsgálja. A vizsgálat eredménye logikai érték: ha a két argumentum azonos IGAZ, különben HAMIS eredményt kapunk. Az előbb ismertetett ISONORAFTER és a KEYWORDMATCH függvények az összehasonlítandó adatokat meghatározó argumentumai lehetnek konstansok, mezőnevek vagy kifejezések.

|   | [ELLENŐRZÉS | 5] 🔻 [ | f =KEYWORDMAT<br>LEFT( [besorolá | CH( IF( [szám] < 5 ;<br>s] ; 1 )) | "C" ; IF( [szám] < 10 ; "B" ; "A" )) ; |
|---|-------------|--------|----------------------------------|-----------------------------------|----------------------------------------|
| 1 | AZ 🔽        | szám 💽 | besorolás 🛛 💌                    | ELLENŐRZÉS 💽                      | Oszlop hozzáadása                      |
| 1 | 01          | 9      | BB                               | IGAZ                              |                                        |
| 2 | 02          | 12     | В                                | HAMIS                             |                                        |
| 3 | 03          | 3      | CC                               | IGAZ                              |                                        |
| 4 | 04          | 15     | AA                               | IGAZ                              |                                        |

142. ábra egy példa a KEYWORDMATCH függvény alkalmazására

A képen látható tábla rekordjainak besorolását ellenőriztem egy számított mezővel. Azonos-e a "besorolás" mező bejegyzésének első karaktere a "szám" nagyságától függő betűjelzéssel. A besorolás második karaktere szubjektív adat. A bővítmény LEFT függvénye azonos a program BAL függvényével.

Az információs függvények tehát logikai értéket adnak eredményül. Ha a leírásukban szereplő kérdésre igen a válasz, akkor IGAZ, ha nem, akkor HAMIS logikai értéket kapunk.

| függvény<br>neve | függvény<br>funkciója        | mit<br>vizsgál      | mire<br>válaszol       |
|------------------|------------------------------|---------------------|------------------------|
| ISTEXT           |                              |                     | szöveg?                |
| ISNONTEXT        | adattípus                    |                     | nem szöveg?            |
| ISLOGICAL        | ellenőrzés                   |                     | logikai?               |
| ISNUMBER         |                              | konstans.           | numerikus?             |
| ISEVEN           | páros-páratlan<br>ellenőrzés | bejegyzés,          | páros?                 |
| ISODD            |                              | statisztikai érték, | páratlan?              |
| ISERROR          | hiba-ellenőrzés              | kifejezés           | hibás?                 |
| ISONORAFTER      | roláciá ollopőrzác           |                     | ez a reláció közöttük? |
| KEYWORDMATCH     | Telacio-elleriorzes          |                     | azonosak?              |
| ISBLANK          | 17. 7                        |                     | üras)                  |
| ISEMPTY          | letezes                      | tábla               | ures:                  |
| CONTAINS         | elienolizes                  | laDia               | létezik?               |

143. ábra az információs függvények rendszerezése

Összefoglalva, a tárgyalt függvények az adat típusáról, feldolgozási hibáról, meghatározott reláció megvalósulásáról valamint adat illetve rekord létezéséről adnak felvilágosítást.

# logikai függvények

Az IGAZ és a HAMIS logikai értékek képzése a DAX azonos nevű, argumentum nélküli függvényeivel történik: TRUE, FALSE. A logikai értékek konstansként is elhelyezhetők a képletben és mint a programban, a bővítményben sem kell őket idézőjelezni.

A NOT, az OR és AND függvények a logikai NEM, a logikai VAGY és a logikai ÉS műveletek elvégzésére szolgálnak. A NOT egyetlen, az OR és az AND két-két argumentuma logikai adattípusú bejegyzés vagy logikai adattípust eredményező kifejezés lehet. Tehát a DAX OR és AND függvénye csak két tényezőt vizsgál, ellentétben a program "korlátlan argumentum-számú" VAGY illetve ÉS függvényével. Bonyolult feltételrendszert a függvények egymásba ágyazásával vagy logikai kapcsolókkal fogalmazhatunk meg.

Nézzünk egy példát! A következő táblában keresem azokat az "A" és "B" betűs rekordokat, amelyek 30 és 70 közötti számot tartalmaznak.

| 1  | AZ 🔽 | betű 🔽 | szám 🔽 | VIZSGÁLAT1 🔽 | VIZSGÁLAT2 🔽 |
|----|------|--------|--------|--------------|--------------|
| 1  | 01   | Α      | 33     | ОК           | ОК           |
| 2  | 02   | С      | 54     |              |              |
| 3  | 03   | В      | 15     |              |              |
| 4  | 04   | С      | 32     |              |              |
| 5  | 05   | В      | 44     | ОК           | ОК           |
| 6  | 06   | Α      | 42     | ОК           | ОК           |
| 7  | 07   | Α      | 29     |              |              |
| 8  | 08   | С      | 50     |              |              |
| 9  | 09   | В      | 94     |              |              |
| 10 | 10   | С      | 66     |              |              |

144. ábra feladat a logikai operátorok és a logikai függvények alkalmazására

Két számított mezőt hoztam létre: az első képletében logikai kapcsolókat a másodikban logikai függvényeket alkalmaztam! Az első mező képletetének összeállításánal figyelembe kellett vennem, hogy a DAX-ban a logikai operátorok nem egyenrangúak, először az ÉS (&&) majd a VAGY (||) operátor kerül végrehajtásra.

145. ábra a számított mezők képlete

# elágazások kezelése

Az alternatívák közötti választás automatizálására két függvény szolgál a DAX-ban: az IF és a SWITCH. Az IF függvény, a program HA függvényével azonos működésű, de szintaktikája egy picit eltér tőle: a DAX-ban a második argumentum megadása kötelező. Ha a harmadik argumentum hiányzik és a feltétel-argumentum HAMIS, akkor a függvény nem ad eredményt.

A SWITCH függvény furcsa keveréke a program VÁLASZT és az Access azonos nevű függvényének. Első argumentuma egy mezőnév, vagy egy kifejezés, további argumentumai párban állnak. A párosok első eleme az első argumentum kiértékelésének egy lehetséges értéke, a páros második eleme az ehhez eredményhez rendelt konstans vagy kifejezés. Másként fogalmazva, a párosok második tagja, azt rögzíti mi történjen akkor, ha a függvény első argumentumának kiértékelése a páros első elemének értékét adja. Az eredmény-művelet párosok után megadhatunk egy önálló argumentumot is, amelyet a függvény, akkor hajt végre, ha az argumentum-párosokkal nem deklarált eredményt kell feldolgoznia.

Lássunk egy példát! A következő tábla üzletkötőit kell kategorizálnunk a bevételeik alapján. Egy millió forint alatti árbevétel "D", egy és két millió közötti "C", kettő és három millió közötti "B" és három millió forint feletti bevétel "A" kategoriát eredményez.

|   | üzletkötő AZ 🛛 🔽 | üzletkötő 🗾 🔽    | bevétel 💽    | KATEGÓRIA 💽 | JUTALÉK 🔽   |
|---|------------------|------------------|--------------|-------------|-------------|
| 1 | 001              | Almási Krisztina | 1 600 000 Ft | С           | 50 000 HUF  |
| 2 | 002              | Berényi Adél     | 2 730 000 Ft | В           | 165 000 HUF |
| 3 | 003              | Dallos Krisztina | 3 800 000 Ft | A           | 495 000 HUF |
| 4 | 004              | Dobai Ágota      | 1 410 000 Ft | С           | 45 000 HUF  |
| 5 | 005              | Dobos Valéria    | 5 930.000 Ft | A           | 775 000 HUF |



146. ábra a SWITCH függvény bemutatása

A SWITCH függvény első argumentumában álló kifejezés eredménye négymillió forint árbevétel felett öt, öt millió forint árbevétel esetén hat. Ezek az eredmények már nincsenek szerepeltetve különkülön eredmény-művelet argumentum-párosokkal. Tehát ők a nem deklarált eredmények. Rájuk a függvény utolsó argumentuma vonatkozik, azaz a második "A" betű.

A tábla "JUTALÉK" számított mezőjének képlete a kategoriától függő jutalékot számolja ki, ötezer forint pontossággal, felfelé kerekítve. Ezt az értéket is a SWITCH függvénnyel képezzük. A DAX CEI-LING függvénye azonos a program PLAFON függvényével: az első argumentumával meghatározott számot a második argumentumával meghatározott szám többszörösére, a számegyenesen jobbra mozdulva, kerekíti.

A SWITCH függvény utolsó argumentuma elhagyható. Ebben az esetben a nem deklarált eredmény üres bejegyzést generál. A függvény művelet-argumentumainak, beleértve az utolsó argumentumot is, azonos adattípusúaknak kell lenniük.

Az IFERROR függvény a hiba-kezelés eszköze. Szintaktikája és működése azonos a program HAHIBA függvényével. A függvény az első argumentumát értékeli ki. Ha a feldolgozás hibát eredményez, akkor végrehajtja a második argumentumával meghatározott műveletet.

|   | AZ |        | összeg 🛛 💌     | évek 🗾 🗾         | ÁTLAG1 0 💌        | ÁTLAG2 💽          | ÁTLAG3 💽    |
|---|----|--------|----------------|------------------|-------------------|-------------------|-------------|
| 1 | 01 |        | 210 000 Ft     | 3                | #HIBA             | 70 000 HUF        | 70 000 HUF  |
| 2 | 02 |        | 70 000 Ft      |                  | #HIBA             | 70 000 HUF        | 70 000 HUF  |
| 3 | 03 |        | 210 000 Ft     | 2                | #HIBA             | 105 000 HUF       | 105 000 HUF |
| 4 | 04 |        | 190 000 Ft     | 1                | #HIBA             | 190 000 HUF       | 190 000 HUF |
| 5 | 05 |        | 150 000 Ft     |                  | #HIBA             | 150 000 HUF       | 150 000 HUF |
|   |    |        |                |                  |                   |                   |             |
|   |    | ÁTLAG: | 1 = [összeg] / | / [évek]         |                   |                   |             |
|   |    | ÁTLAG: | 2 = IF( ISERRO | DR([összeg]/[é   | vek] ) ; [összeg] | ; [összeg] / [éve | :k] )       |
|   |    | ÁTLAG  | 3 = IFERROR(   | [összeg] / [évek | (];[összeg])      |                   |             |



Az IFERROR függvény tehát az IF és az ISERROR függvényekkel felírható műveletsor egyszerűsítése: IF( ISERROR( művelet1 ); művelet2; művelet1 ) = IFERROR (művelet1; művelet2).

Az üres bejegyzést eredményező, argumentum nélküli BLANK függvényt nem tudjuk egyik függvény-kategoriába se besorolni, de talán az elágazásokat kezelő képletekben fordul elő leggyakrabban.

# előjeles számok kezelése

A DAX SIGN és ABS függvénye azonos a program ABS és ELŐJEL függvényeivel. A SIGN függvény megállapítja az egyetlen argumentumával meghatározott szám előjelét. Eredménye mínusz egy (-1), ha a vizsgált szám negatív, nulla (0) ha a vizsgált szám nulla és egy (1), ha a vizsgált szám pozitív. Az ABS függvény az egyetlen argumentumával deklarált szám abszolút értékét adja eredményül. Ez a két függvény tehát az előjeles számok megkülönböztetését és egyszerű kezelését teszik lehetővé.

#### aritmetikai műveletek függvényei

A QUOTIENT és a MOD függvények az első argumentumukkal meghatározott számot elosztják a második argumentumukkal deklarált számmal, majd a hányados egész részét (QUOTIENT), illetve az osztási maradékot (MOD) adják eredményül. A két függvény működése és szintaktikája azonos a program KVÓCIENS és a MARADÉK függvényeivel. Ezt a két műveletet szokták még "egész-osztásnak" és "maradék-képzésnek" is nevezni.

Mindkét függvény hibát eredményez, ha második argumentumuk nulla vagy üres bejegyzés. A hiba elkerülésének egyik lehetséges módja a DIVIDE függvény használata. Első két argumentuma neki is az osztandó és az osztó, de rendelkezik egy harmadik argumentummal is, amellyel a függvény eredményét határozhatjuk meg nullával vagy üres bejegyzéssel való osztás esetére. Ez az argumentum csak szám-konstans vagy a BLANK() függvény lehet. A hiba javítása általánosan megfogalmazva a következő. EGÉSZOSZTÁS: INT( DIVIDE( osztandó ; osztó ; BLANK())). MARADÉKKÉP-ZÉS: osztandó - EGÉSZOSZTÁS \* osztó.

A hatványozást a DAX-ban a kalap (^) műveleti jellel vagy a POWER függvénnyel írhatjuk elő. A függvény két argumentuma az alap és a kitevő. Az SQRT függvény az egyetlen argumentumával meghatározott szám négyzetgyökét adja eredményül.

Két pozitív egész szám legnagyobb közös osztóját a GCD, legkisebb közös többszörösét az LCM függvénnyel képezhetjük. A művelet végrehajtása előtt, ha ez szükséges, a függvények az argumentumaikban álló tört számokat egészre kerekítik.

A FACT függvénnyel egyetlen argumentumának faktoriálisát számíthatjuk ki. A tizedes tört argumentumot a függvény egészre csonkolja.

A PI argumentum nélküli függvénnyel a matematikai állandó értékét írathatjuk be a képletbe, tizennégy számjegy pontossággal (3,14159265358979).

#### csonkoló és kerekítő függvények

A csonkoló és a kerekítő függvények segítségével a számolás pontosságát határozhatjuk meg. A DAXban két csonkoló és kilenc kerekítő függvényt találunk.

A számítás pontosságát meghatározó függvények működését a számegyenes segítségével lehet a legegyszerűbben elmagyarázni: a függvény az átalakítandó szám bal/jobb oldalán, legközelebb álló, a pontosságnak megfelelő, számot adja eredményül.

A kérdés tehát az: a képzett szám az átalakítandó szám melyik oldalán áll a számegyenesen. Másként fogalmazva: a függvény az új szám képzéséhez a számegyenesen milyen irányban "mozdul el"? Négy válasz lehetséges. [1] Az irányt a kerekítés általános szabályai határozzák meg. [2] Az elmozdulás a számegyenes minden pontján azonos irányú, balra vagy jobbra. Jelölése: balra, illetve jobbra mutató nyíl. [3] Az elmozdulás a nulla irányába történik. Jelölése: a nullára mutató nyilak. [4] A képzett számot a nullától távolodva kapjuk. Jelölése: a nullától balra és jobbra mutató nyilak.

A számítás pontosságát meghatározó függvények két argumentumúak. Az elsővel a számot a másodikkal a pontosságot határozzuk meg. A csonkoló függvények ebből a szempontból kivételek. Az INT függvénynek nincs második argumentuma, mert pontossága egész. A szám tört részében álló számjegyeket nullára cseréli. A TRUNC függvény két argumentumú, de második argumentuma elhagyható. Ha a második argumentumot nem adjuk meg, akkor ez a függvény is egészre csonkol. A TRUNC függvény második argumentuma előjeles szám. Ha a pontosság pozitív szám, akkor az átalakítandó szám tört részében a pontosságban megadott számú számjegy fog állni, a többit a függvény "lenullázza". Ha a pontosság negatív, akkor a függvény az átalakítandó szám egész részében, a tizedes elválasztótól balra haladva, a pontosságban megadott számú számjegyeket nullára cseréli.

A "kerekítő" függvények pontosság argumentumuk értelmezése alapján két csoportba sorolhatók. Az első csoportba tartozók a ROUND, a ROUNDDOWN és a ROUNDUP a második argumentumuk által meghatározott számú számjegy pontosságra alakítják át az első argumentumukkal meghatározott számot. A másik csoport tagjai, az MROUND, a FLOOR, a CEILING és az ISO.CEILING függvények az első argumentumukkal meghatározott számot a második argumentumukkal meghatározott szám többszörösére alakítják át.

A TRUNC, a ROUND, a ROUNDDOWN és a ROUNDUP függvények második argumentuma negatív szám is lehet. Tehát ezekkel a függvényekkel nem csak egy tizedesjegy, két tizedesjegy, három tizedesjegy... (1, 2, 3...), hanem tízes, százas, ezres... (-1, -2, -3...) pontossággal is számolhatunk.

Az egy szám többszörösét előállító függvények működésüket argumentumaik előjelének vizsgálatával kezdik: az eltérő előjelek hibát eredményeznek!

| 1 | szám     |     | alap 💽             | MROUND       | 🕨 🔽 JAVÍTOTT 💽         |
|---|----------|-----|--------------------|--------------|------------------------|
| 1 |          | 22  | -4                 | #HIBA        | 24                     |
| 2 |          | 27  | 3                  | #HIBA        | 27                     |
| 3 |          | -48 | 9                  | #HIBA        | -45                    |
| 4 |          | -43 | 4                  | #HIBA        | -44                    |
|   | MROUND   | =M  | ROUND( [szám] ; [a | alap])       |                        |
|   | MROUND J | =M  | ROUND( ABS( [szár  | n]);ABS([ala | p] )) * SIGN( [szám] ) |

148. ábra az argumentumok eltérő előjeléből adódó hiba és javítása

Az egyargumentumos EVEN és ODD függvények az argumentumukkal meghatározott számhoz, a nullától távolodva, legközelebb álló páros illetve páratlan számot adják eredményül.

Az ebben a fejezetben ismertetett függvények tehát működésük alapján három csoportba sorolhatók: csonkolók, adott számjegyre kerekítők és egy szám többszörösére kerekítők.

| függvény<br>neve | működés<br>jellege                      | elmozdulás<br>iránya | második<br>argumentum        |  |
|------------------|-----------------------------------------|----------------------|------------------------------|--|
| INT              | a a mir a lá a                          | <                    | nincs                        |  |
| TRUNC            | CSONKOIAS                               | > 0 <                | elhagyható, negatív is lehet |  |
| ROUND            | kerekítés                               | szabály szerint      | 1                            |  |
| ROUNDDOWN        | adott számú                             | > 0 <                | KOTElezo<br>pegatív is lebet |  |
| ROUNDUP          | számjegyre                              | < 0 >                | negativ is lefter            |  |
| MROUND           |                                         | szabály szerint      |                              |  |
| FLOOR            | kerekítés                               | > 0 <                | előjele azonos               |  |
| CEILING          | többszörösére                           | < 0 >                | az első argumentuméval       |  |
| ISO.CEILING      | 100000000000000000000000000000000000000 | >                    |                              |  |
| EVEN             | páros-páratlan                          | ( ) )                | nince                        |  |
| ODD              | átalakítás                              | < 0 >                | nincs                        |  |

149. ábra kerekítő és csonkoló függvények rendszerezése

A ROUND és az MROUND függvények az átalakítandó szám előjelétől függetlenül a kerekítés szabályai szerint működnek.

# teszt-értékek generálása

A csoport két függvényét bonyolult képletek teszteléséhez használhatjuk. A számított objektumok frissítésekor a függvények mindig új eredményt adnak: az argumentum nélküli RAND nulla és egy közé eső törtszámot, míg a kétargumentumos RANDBETWEEN az argumentumaival meghatározott intervallumból egész számot. A RANDBETWEEN függvény első argumentuma az intervallum kezdőértékét, második argumentuma az intervallum utolsó értékét határozza meg. A függvény hibát eredményez ha nem teljesül a "kezdőérték <= utolsó érték" reláció. Az argumentumként megadott törtszámot a bővítmény egészre kerekíti, az első argumentumot a számegyenesen jobbra, a másodikat balra mozdulva el a számegyenesen.

# további matematikai függvények

A DAX többi matematikai függvénye már csak a felhasználók egy nagyon szűk csoportjának készült. Ebbe a csoportba tartozik a kombinatorika két függvénye (COMBIN, COMBINA), a logaritmus-függvények (EXP, LN, LOG, LOG10), a szögfüggvények (ACOS, ACOSH, ACOT, ACOTH, ASIN, ASINH, ATAN, ATANH, COS, COSH, COT, COTH, DEGREES, RADIANS, SIN, SINH, TAN, TANH) és a valószínűségszámítás függvényei (BETA.DIST, BETA.INV, CHISQ.DIST, CHISQ.DIST.RT, CHISQ.INV, CHISQ.INV.RT, CONFIDENCE.NORM, CONFIDENCE.T, EXPON.DIST, PERMUT, POISSON.DIST).

#### szám és szöveg konvertálása

A DAX függvénytára hat adattípus-konvertáló függvényt tartalmaz. Ebből kettőt már ismerünk, a DATEVALUE és a TIMEVALUE függvényeket. Előbbivel szövegként megadott dátumot, utóbbival szövegként megadott időpontot konvertálhatunk dátum adattípussá.

A CURRENCY függvény az egyetlen argumentumával deklarált kifejezés eredményét, négy tizedesjegyre kerekítve pénznem adattípusra alakítja át. A logikai értékek 0,0000 Ft (HAMIS) és 1,0000 Ft (IGAZ) értéket eredményeznek.

Az azonosítóként használt számok kezelése, számtalan esetben, egyszerűbb, ha a számot szöveggé alakítjuk át. A jó olvashatóság érdekében a számok formátumát a karakterláncban is ajánlott megtartani. Ezt a lehetőséget biztosítja a bővítmény FIXED és FORMAT függvénye.

A FIXED egy számot ezres csoportosításban, két tizedesjegyre kerekítve, szöveggé alakít át. A függvény első argumentuma az átalakítandó szám deklarációja. A második, nem kötelező argumentummal a szám törtrészében álló számjegyek számát határozhatjuk meg. Az ezres csoportosítást a harmadik, elhagyható argumentumban álló, nullától eltérő számmal tilthatjuk meg. Ha nem kérjük a csoportosítását, akkor a tört rész számjegyeinek számát meg kell adnunk.

| 1 | AZ 🗾           | szám 💌      | 1ARG 🗾         | 2ARG 💌      | 3ARG 💽           |
|---|----------------|-------------|----------------|-------------|------------------|
| 1 | 01             | -55278,3    | -55 278,30     | -55 278,300 | -55278           |
| 2 | 02             | 53064,619   | 53 064,62      | 53 064,619  | 53065            |
| 3 | 03             | 273478,2117 | 273 478,21     | 273 478,212 | 273478           |
| G | =FIXED( [szám] | ) 2ARG      | =FIXED( [szám] | ;3) 3ARG    | =FIXED( [szám] ; |

150. ábra a FIXED függvény működésének szemléltetése három számított mezővel

Ha a FIXED függvény második argumentuma több tizedesjegyet ír elő a ténylegesnél, akkor a bővítmény nullával tölti fel a szám törtrészét a kívánt számjegyig. Ezt az eljárást figyelhetjük meg a képen látható tábla, 2ARG nevű számított mezőjében.

A FORMAT függvénnyel is számot alakítunk át szöveggé, de az eredményként kapott karakterlánc nem csak különböző formátumú szám, de logikai érték, dátum és időpont is lehet. Választhatunk a függvény, névvel azonosított, formátumai közül vagy saját megjelenítést írhatunk elő.

Először tekintsük át a függvény formátumait. A használni kívánt megjelenítés nevét, idézőjelek között a függvény második argumentumával kell megadnunk. A névben a kis- és nagybetűk nincsenek megkülönböztetve: FORMAT( szám deklarációja ; "formátum-név" ).

| átalakítandó<br>szám | "general<br>number" | "fixed"  | "standard" | "currency"   | "percent"   | "scientific" |
|----------------------|---------------------|----------|------------|--------------|-------------|--------------|
| 0,00055              | 0,00055             | 0,00     | 0,00       | 0,00 Ft      | 0,06%       | 5,50E-04     |
| -0,00555             | -0,00555            | -0,01    | -0,01      | -0,01 Ft     | -0,56%      | -5,55E-03    |
| 5,55555              | 5,55555             | 5,56     | 5,56       | 5,56 Ft      | 555,56%     | 5,56E+00     |
| -55,5555             | -55,5555            | -55,56   | -55,56     | -55,56 Ft    | -5555,55%   | -5,56E+01    |
| -5555,55             | -5555,55            | -5555,55 | -5 555,55  | -5 555,55 Ft | -555555,00% | -5,56E+03    |
| 55555,5              | 55555,5             | 55555,50 | 55 555,50  | 55 555,50 Ft | 5555550,00% | 5,56E+04     |

151. ábra a FORMAT függvény "számformátumainak" szemléltetése

Ahogy a képen megfigyelhetjük, a FORMAT függvény a szöveggé alakítás előtt, a formátumnak megfelelő számú számjegyre kerekíti a konvertálandó számot. A felsorolt hat lehetőséggel tehát "számként" formázva jeleníthetjük meg a szöveggé alakított számot. A függvény további három saját formátumával logikai adattípusnak látszó szöveget hozhatunk létre a kiindulásként megadott számból.

| átalakítandó szám | "yes/no" | "true/false" | "on/off" |
|-------------------|----------|--------------|----------|
| 0                 | Nem      | Hamis        | Ki       |
| <> 0              | lgen     | lgaz         | Be       |

152. ábra

szám átalakítása logikai adattípusnak látszó szöveggé a FORMAT függvénnyel

A táblázat tanúsága szerint a FORMAT függvény a nullát HAMIS, és minden a nullától eltérő számot IGAZ logikai értéknek tekint.

A FORMAT függvény első argumentumával megadott számból dátumot és időpontot is képezhetünk. Ezek formázására a függvény hét formátumot kínál. Az alábbi táblázat első oszlopa a formátumok nevét, első sora az átalakítandó számokat tartalmazza.

|                |                      | _                  |                      |  |
|----------------|----------------------|--------------------|----------------------|--|
| formátum neve  | -5,555               | 0                  | 5,555                |  |
| "general date" | 1899.12.25. 13:19:12 | 0:00:00            | 1900.01.04. 13:19:12 |  |
| "long date"    | 1899. december 25.   | 1899. december 30. | 1900. január 4.      |  |
| "medium date"  | 25-dec-99            | 30-dec-99          | 04-jan-oo            |  |
| "short date"   | 1899.12.25.          | 1899.12.30.        | 1900.01.04.          |  |
| "long time"    | 13:19:12             | 0:00:00            | 13:19:12             |  |
| "medium time"  | 01:19 du.            | 12:00 de.          | 01:19 du.            |  |
| "short time"   | 13:19                | 00:00              | 13:19                |  |

153. ábra

szám átalakítása dátumot és időpontot tartalmazó szöveggé a FORMAT függvénnyel

A FORMAT függvény választható formátumai tehát a következők. Számok: general number, fixed, standard, currency, percent és scientific. Logikai értékek: yes/no, true/false, on/off. Dátumok: generate date, long date, medium date, short date. Időpontok: long time, medium time, short time.

Egyéni megjelenítést a FORMAT függvény formátum-leíró karaktereivel határozhatunk meg. A formátum-leíró karakterekből álló kód a függvény második, idézőjelek között álló argumentuma.

Először vegyük számba azokat a karaktereket, amelyekkel az átalakítandó számot számként formázhatjuk. A kettős kereszt (#) és a nulla (0) a szám jelölője a kódban. Ezekkel a karakterekkel írjuk elő a tizedes elválasztótól balra (egész rész) és a tizedes elválasztótól jobbra (tört rész) álló számjegyek számát. A formátum-kódban a tizedes elválasztót ponttal, az ezres elválasztót vesszővel jelöljük. Vigyázzunk ne keverjük össze a kódban és a karakterláncban álló tizedes- és ezres elválasztót! A mi területi és nyelvi beállításaink mellett a tizedes elválasztó a vessző, az ezres elválasztó pedig a szóköz karakter. Lássunk néhány példát a formátum-leíró karakterek használatára! A táblázat első oszlopa az átalakítandó számot, első sora az alkalmazott kódot tartalmazza.

|   | átalakítandó<br>szám | ,,,,      | "#.##"   | "#,###" | "0.00"   | "0,000" | "#,##0.00" |
|---|----------------------|-----------|----------|---------|----------|---------|------------|
|   | 55555,555            | 55555,555 | 55555,56 | 55 556  | 55555,56 | 55 556  | 55 555,56  |
| ľ | -5,5                 | -5,5      | -5,5     | -6      | -5,50    | -0 006  | - 5,50     |
| ľ | 0,5                  | 0,5       | ,5       | 1       | 0,50     | 0 001   | 0,50       |
| ľ | 0                    | 0         | ,        |         | 0,00     | 0 000   | 0,00       |

154. ábra

formátum-leíró karakterek a parancskódban és hatásuk a megjelenítésben

Vizsgáljuk meg az egyes parancskódok hatását a megjelenítésre! [""] Az üres formátumkód formázás nélküli megjelenítést eredményez. Ez a kód tehát a függvény "general number" megjelenítésével azonos. [#.##] A törtrész számjegyeinek száma legfeljebb kettő, ennél több számjegy esetén, a számot a függvény két tizedesjegyre kerekíti. Az egész rész számjegyeinek száma nincs korlátozva. Az önállóan álló nulla sem a törtrészben, sem az egész részben nem lesz megjelenítve. ["#,###"] A szám ezres csoportosításban, törtrész nélkül, egészre kerekítve fog megjelenni. Ha a szám nulla, akkor a függvénynek nincs eredménye. ["0.00"] A törtrész számjegyeinek száma legfeljebb kettő, ennél több számjegy esetén, a számot a függvény két tizedesjegyre kerekíti. Az egész rész számjegyeinek száma nincs korlátozva. Ha a kódban álló nulla pozíciójában az átalakítandó szám nem tartalmaz számjegyet, akkor abban a pozícióban a függvény nullát fog megjeleníteni a karakterláncban. ["0,000"] A szám ezres csoportosításban, törtrész nélkül, egészre kerekítve fog megjelenni. Ha a szám nulla, akkor a függvénynek eredménye is nulla, a kódban megadott formázással. ["#,##0.000"] Formátum-kód az eddig ismertetett elemekből. Ezres csoportosítás az egész részben, három számjegy a törtrészben. Ha a tört rész háromnál több számjegyből áll, akkor a függvény a számot három tizedesjegyre kerekíti, ha a tört rész háromnál kevesebb számjegyből áll, akkor a hiányzó számjegyeket a függvény nullákkal pótolja. Ha nincs egész rész a függvény nullát jelenít meg a tizedes elválasztótól balra.

A következő táblázatban bemutatom, hogyan rendelhetünk egyéni formai jegyeket a normál alakban illetve a százalékként ábrázolt szám megjelenítéséhez, illetve hogyan fűzhetünk pénznem jelölőt illetve mértékegységet a karakterláncban álló számhoz.

| átalakítandó<br>szám | "0.0e+0"        | "0.0 %"     | "#,##0.00 €" | "#,##0.0 km" |
|----------------------|-----------------|-------------|--------------|--------------|
| 55555,555            | 5 <b>,</b> 6e+4 | 5555555,5 % | 55 555,56 €  | 55 555,6 km  |
| -5,5                 | -5,5e+0         | -550,0 %    | -5,50 €      | -5,5 km      |
| 0,5                  | 5,0e-1          | 50,0 %      | 0,50€        | 0,5 km       |
| -0,055               | -5,5e-2         | -5,5 %      | -0,06€       | -0,1 km      |

#### 155. ábra

szöveges normál alak, a százalék, a pénznem és a mértékegység egyéni formázása

Vegyük ismét számba az egyes parancskódok hatását a megjelenítésre! ["o.oe+o"] A normál alak kódja tehát négy elemből áll: a mantissza formátum-deklarációja, kis "e" betű vagy nagy "e" betű, "plusz jel" és a karakterisztika formátum-kódja. ["o.o %"] Százalékos megjelenítést írhatunk elő a szám formátum-deklarációja követő százalékjellel. A százalékjel előtt álló szóközt, a kódban is szó-közzel kell megadnunk. ["#,##0.00 €" és "#,##0.0 km"] A kódban a szám formátum-deklarációját megelőző és az azt követő karakterek, a szóközt is beleértve, a karakterláncban is meg lesznek jelenítve.

A FORMAT függvény lehetőséget kínál a pozitív és a negatív számok, valamint a nulla eltérő megjelenítésére is. A függvény második argumentuma pontosvesszőkkel szakaszokra osztható fel. Legfeljebb három szakaszt hozhatunk létre. Az első szakasz a pozitív számok, a második szakasz a negatív számok, a harmadik szakasz pedig a nulla formátum-deklarációját tartalmazza.

| átalakítandó<br>szám | "többlet #,##0.00 €" | "többlet #,##0.00 €;hiány #,##0.00 €" | "többlet #,##0.00 €;hiány -#,##0.00 €;0" |
|----------------------|----------------------|---------------------------------------|------------------------------------------|
| 55555,5              | többlet 55 555,50 €  | többlet 55 555,50 €                   | többlet 55 555,50 €                      |
| 55,5555              | többlet 55,56 €      | többlet 55,56 €                       | többlet 55,56 €                          |
| 0                    | többlet 0,00 €       | többlet 0,00 €                        | 0                                        |
| -55,5555             | -többlet 55,56 €     | hiány 55,56 €                         | hiány -55,56 €                           |
| -55555,5             | -többlet 55 555,50 € | hiány 55 555,50 €                     | hiány -55 555,50 €                       |

156. ábra a FORMAT függvény második argumentumának szakaszai

["többlet #,##0.00  $\epsilon$ "] Szakaszok nélkül a pozitív és a negatív számok, valamint a nulla megjelenítése azonos. ["többlet #,##0.00  $\epsilon$ ;hiány #,##0.00  $\epsilon$ "] Amennyiben a bővítmény a függvény második argumentumában két szakaszt talál, akkor az elsőt a pozitív számok és a nullák, a másodikat pedig a negatív számok megjelenítési előírásának tekinti. A táblázat harmadik oszlopát nézegetve, látjuk, hogy a negatív számok előtt hiányzik a mínusz jel. Ez a mi esetünkben nem hiba, hiszen a tájékoztató "hiány" felirat egyértelműen mutatja a mennyiség "előjelét". Ha a hagyományos formátumot szeretnénk, akkor a formátumkódban is szerepeltetnünk kell a mínusz jelet, ahogy azt a következő kódban látjuk. ["többlet #,##0.00  $\epsilon$ ;hiány -#,##0.00  $\epsilon$ ;0"] Háromszakaszos formátum-deklarációval nem csak a pozitív és a negatív számok, de a nulla megjelenítését is beállíthatjuk.

Miután áttekintettük a számként történő megjelenítés szabályozását, ismerkedjünk meg a dátumdeklarációk formátum-leíró karaktereivel illetve karakter csoportjaival.

| megjelenítendő            | kód    | -50 000    | 50 000      |
|---------------------------|--------|------------|-------------|
| rövid dátum               | "с"    | 1763.02.06 | 2036.11.21. |
| évszám két számjeggyel    | "уу"   | 63         | 36          |
| évszám                    | "уууу" | 1763       | 2036        |
| hónapszám                 | "m"    | 2          | 11          |
| hónapszám vezető nullával | "mm"   | 02         | 11          |
| hónapnév rövidítve        | "mmm"  | febr       | nov         |
| hónapnév                  | "mmmm" | február    | november    |
| napszám                   | "d"    | 6          | 21          |
| napszám vezető nullával   | "dd"   | 06         | 21          |
| napnév rövidítve          | "ddd"  | V          | Р           |
| napnév                    | "dddd" | vasárnap   | péntek      |
| negyedév száma            | "q"    | 1          | 4           |
| hét sorszáma az évben*    | "ww"   | 6          | 47          |
| nap sorszáma az évben     | "у"    | 37         | 326         |
| nap sorszáma a héten**    | "w"    | 7          | 5           |

157. ábra

formátum-leíró karakterek és karakter csoportok szöveges dátumok formázásához

A függvény az év első hetének ("ww") a január elsejét tartalmazó hetet tekinti. A napok sorszámozása a héten ("w") hétfővel kezdődik, amelynek sorszáma az egyes. A táblázatban felsorolt formátum-leíró karakterek és karakter csoportok tetszőleges sorrendben és összetételben variálhatók. A dátumegységeket a mindennapi életben megszokott karakterekkel (pont, szóköz, kötőjel) választhatjuk el.

| kód               | 44444               |
|-------------------|---------------------|
| "yy. mmmm d."     | 21. szeptember 5.   |
| "yyyy-mm-dd dddd" | 2021-09-05 vasárnap |
| "mmm. d. ddd."    | szept. 9. V.        |

158. ábra három példa a szöveges dátumok megjelenítésének szabályozására

Az időpontok megjelenítésének szabályozása a "h" az "n" és az "s" (óra, perc, másodperc) karakterekkel történik. Az egyszámjegyű időegységek vezető nulláját a karakterek megkettőzésével (hh, nn, ss) írhatjuk elő.

| megjelenítendő                 | kód  | -13,131313          | 91,919191            |
|--------------------------------|------|---------------------|----------------------|
| rövid dátum időponttal         | "с"  | 1899.12.17. 3:09:05 | 1900.03.31. 22:03:38 |
| óraszám                        | "h"  | 3                   | 22                   |
| óraszám vezető nullával        | "hh" | 03                  | 22                   |
| percszám                       | "n"  | 9                   | 3                    |
| percszám vezető nullával       | "nn" | 09                  | 03                   |
| másodperc-szám                 | "s"  | 5                   | 38                   |
| másodperc-szám vezető nullával | "ss" | 05                  | 38                   |

<sup>159.</sup> ábra

szöveges időpont megjelenítését előíró karakterek és karakter csoportok

Az időegységek elválasztása a kettősponttal történik, amit a kódban kell deklarálnunk. Például a fenti táblázat két számát a "hh:nn" kód előírásai szerint a bővítmény így jeleníti meg: 03:09 és 22:03.

A formátum-leíró karakterek és karakter csoportokon kívül a FORMAT függvény második argumentumában tetszőleges szöveg megjelenítését is előírhatjuk, de a megjelenítendő szövegben álló formátum-leíró karaktereket fordított perjellel (\) meg kell jelölnünk. A backslash után álló betűt a bővítmény nem megjelenítési utasításnak, hanem betűnek tekinti. A következő táblázatban erre mutatok néhány példát.

| kód                      | 44444                |
|--------------------------|----------------------|
| "q. \neg\ye\dév"         | 3. negyedév          |
| "ww.\hét"                | 36. hét              |
| "y. \nap yy-mm-dd"       | 248. nap 21-09-05    |
| "dd. (a \hét w. \napja)" | 05. (a hét 7. napja) |

160. ábra formátum-leíró karakterek a megjelenítendő szövegben

A DAX hatodik konvertáló függvénye, a VALUE, egy szövegként megadott számot tizedes törtté alakít át. A függvény egyetlen argumentuma az átalakítandó szöveg. Lássunk egy példát a függvény alkalmazására! Egy vállalat adatbázisaiban, az alkalmazottakat nevük kezdőbetűivel és belepésük évszámának utolsó két számjegyével azonosítanak. Ki szeretnénk számolni, hány éve dolgoznak már a vállalatnál az egyes kollégák. Az alábbi képen látható tábla "kód" nevű mezőjének utolsó két számjegyét fogjuk felhasználni a képletben.

| 1 | AZ 🔽 | kód 🔽 | ÉVEK 🔽 |
|---|------|-------|--------|
| 1 | 01   | BM07  | 10     |
| 2 | 02   | KL06  | 11     |
| 3 | 03   | FK04  | 13     |
| 4 | 04   | SI10  | 7      |

ÉVEK =YEAR( TODAY() ) - VALUE( "20" & RIGHT( [kód] ; 2 ))

161. ábra a példa táblája az ÉVEK számított mezővel

A bővítmény RIGHT függvényének funkciója és szintaktikája azonos a program JOBB függvényével: a második argumentumával meghatározott számú karaktert ad eredményül az első argumentumával meghatározott karakterlánc végéről.

A VALUE függvényt csak összefűzéssel létrehozott számok képzésénél és nagyon különleges esetekben kell alkalmaznunk, mert aritmetikai műveletek esetén a szövegként tárolt szám számmá konvertálását a bővítmény automatikusan elvégzi.

# hierarchia kezelése

Az adatbázis-kezelés alapkövetelménye a rekordok egyértelmű azonosíthatósága. A modern számítástechnikában ezt általában egyetlen, egyedi bejegyzésekből álló, mezővel oldjuk meg. Ez a mező a tábla kulcs mezője, amelynek neve hagyományosan, "<táblanév egyes számban> AZ". Például a "kollégák" tábla kulcs mezőjének neve "kolléga AZ". Az "AZ" karakterlánc az "azonosító" szó rövidítése. A kulcs mező egy kiválasztott bejegyzése az őt tartalmazó rekord kulcsa.

A tábla kulcs mezőjét hierarchia tárolására is felhasználhatjuk. Ez úgy lehetséges, hogy a táblában létrehozunk egy mezőt a függőség tulajdonság számára és ebbe a mezőbe mindig a rekord közvetlen "felettesének" kulcsát helyezzük el. Nézzünk egy példát! Egy vállalt dolgozóinak függőségi struktúrája háromszintes.



162. ábra a vállalat függőségi struktúrája, a dolgozók rekordjainak kulcsával (kolléga AZ)

A munka a mentorok irányításával folyik. A mentor az a kolléga, aki a struktúrában közvetlenül a munkatárs felette áll. A munkák jóváírása elszámolási egységek alapján történik.



163. ábra a példa táblái

A "kollégák" tábla "mentor AZ" mezője az adott munkatárs irányítójának "kolléga AZ"-ját tartalmazza. Másként fogalmazva a "mentor AZ" egyenlő az irányító munkatárs rekordjának kulcsával. A rekordok kulcsával tárolt struktúrát a DAX hierarchia-kezelő függvényeivel dolgozhatjuk fel.

|   | kolléga AZ | név                                  | mentor AZ    | FÜGGŐSÉG      | SZINT A    | SZINT B | SZINT C  | SZINTEK   | MENTOR       | TAR E    |
|---|------------|--------------------------------------|--------------|---------------|------------|---------|----------|-----------|--------------|----------|
| 1 | B1         | Ács Ábel                             | A1           | A1 B1         | A1         | B1      |          | 2         | Pék Áron     | HAMIS    |
| 2 | C4         | Bán Ernő                             | B5           | A2 B5 C4      | A2         | B5      | C4       | 3         | Sós Márk     | HAMIS    |
| 3 | C1         | Eke Adél                             | B2           | A1 B2 C1      | A1         | B2      | C1       | 3         | Pap Hugó     | IGAZ     |
| 4 | C2         | Gál Ádám                             | B2           | A1 B2 C2      | A1         | B2      | C2       | 3         | Pap Hugó     | IGAZ     |
| 5 | A2         | Kis Géza                             |              | A2            | A2         |         |          | 1         |              | HAMIS    |
| 6 | C3         | Kun Iván                             | B2           | A1 B21C2      | A1         | B2      | C3       | 3         | Pap Hugó     | IGAZ     |
|   |            |                                      |              |               |            |         |          |           |              |          |
|   | FÜGGŐSÉG   | = PATH( [kolléga AZ] ; [mentor AZ] ) |              |               | SZ         | INT C   | = PATHIT | em( [füg  | GŐSÉG] ; 3 ) |          |
|   | SZINT A    | = PATHITEM( [FÜGGŐSÉG] ; 1 )         |              |               | SZ         | INTEK   | = PATHLE | ENGTH( [F | ÜGGŐSÉG] )   |          |
|   | SZINT B    | = PATHITEM( [FÜGGŐSÉG] ; 2 )         |              |               | Т          | ARE     | = PATHC  | ONTAINS(  | [FÜGGŐSÉG]   | ; "b2" ) |
|   | MENTOR     | = LOOKUP                             | VALUE( [név] | ; [kolléga AZ | ] ; [mento | r AZ] ) |          |           |              |          |

164. ábra a munkák tábla számított mezői

A teljes függőségi sort, végén a vizsgált elemmel, a PATH függvénnyel képezhetjük. Két argumentuma a kulcs mező és a "felettes" rekordok kulcsát tartalmazó mező. Az argumentumok csak mezők lehetnek. A függvény szintaktikáját és eredményét a példa "FÜGGŐSÉG" számított mezőjének képlete mutatja be. A különböző szinteken álló elemeket függőleges vonás karakter (|) választja el. A függőségi sor egyes elemeit a PATHITEM függvénnyel kérdezhetjük le. A függvény első argumentumával a függőségi sort, második argumentumával a lekérdezni kívánt elem sorszámát kell deklarálnunk. A sorszámozás egyessel, a legfelső szinttől kezdődik vagy másként fogalmazva a függőségi sorban balról jobbra halad. A függvény harmadik, nem kötelező argumentumával az eredmény adattípusát állíthatjuk be: ha értéke nulla (o) vagy nem adjuk meg, akkor szöveg adattípusú eredményt kapunk, ha értéke egy (1), akkor az eredmény egész szám adattípusú lesz. A "kollégák" tábla "SZINT A, B, C" számított mezői a PATHITEM függvényt alkalmazzák.

A PATHITEMREVERSE függvény csak a függőségi sor elemeinek sorszámozásában tér el a PATH-ITEM függvénytől: a számozás a legalsó szinttől kezdődik, vagy másként fogalmazva a függőségi sorban jobbról balra halad.

A függőségi sor elemeinek számát a PATHLENGTH függvénnyel határozhatjuk meg. Egyetlen argumentuma a függőségi sor deklarációja. Példánkban a PATHLENGTH függvényt a "SZINTEK" mező képletében alkalmaztuk.

A PATHCONTAINS függvénnyel a kulcs mező egy bejegyzését kereshetjük a függőségi sorban. Másként fogalmazva, a függvény első argumentumával meghatározott függőségi sorban szerepel-e, a függvény második argumentumában, idézőjelek között álló, kulcs mező bejegyzés, a kis- és nagybetűk megkülönböztetése nélkül. Igen válasz esetén a függvény eredménye IGAZ, különben HA-MIS. Példánkban a "TAR E" számított mező képletében láthatjuk a függvényt.

A MENTOR számított mező képletében álló LOOKUPVALUE függvénnyel az irányító munkatárs nevét íratjuk ki. A deklarált argumentumokkal a következő művelet elvégzésére utasítjuk a függvényt: keresd ki a "kollégák" táblában azt a rekordot, amelynek "kolléga AZ" mezőjében (második argumentum) a "mentor AZ" (harmadik argumentum) értéke áll és ennek a rekordnak a "név" mezőjében (első argumentum) álló bejegyzést add eredményül. Elszakadva a példától, a LOOKUPVALUE függvény az első argumentumával meghatározott mező egy bejegyzését adja eredményül, abból a rekordból, amelyet további mezőnév-bejegyzés argumentum-párosai határoznak meg.

# hierarchia a kimutatásban

Visszatérve példánkhoz, a név és hierarchia szerinti kimutatásos elemzéshez három számított mezőt kell létrehoznunk: SZINT AN/BN/CN. Ez a három mező mutatja majd meg, ki áll közvetlenül az adott kolléga felett a hierarchia különböző szintjein. A függőségi sort és a neveket egyetlen képlettel állapítjuk meg: = LOOKUPVALUE( [név]; [kolléga AZ]; PATHITEM( PATH( [kolléga AZ]; [mentor AZ]); <szint sorszáma> )).

| SZINT AN        | ×. | SZINT BN | 1 | SZINT CN | -  | Összeg - egység |
|-----------------|----|----------|---|----------|----|-----------------|
| Kis Géza        |    | (üres)   |   | (üres)   |    | 7               |
|                 |    | Réz Benő |   | (üres)   |    | 12              |
|                 |    | Sós Márk |   | (üres)   |    | 7               |
|                 |    |          |   | Bán Ernő |    | 15              |
|                 |    |          |   | Sas Béla |    | 1               |
| Kis Géza Összeg |    |          |   |          | 42 |                 |
| Pék Áron        |    | (üres)   |   | (üres)   |    | 7               |
|                 |    | Ács Ábel |   | (üres)   |    | 3               |
|                 |    | Pap Hugó |   | (üres)   |    | 12              |
|                 |    |          |   | Eke Adél |    | 12              |
|                 |    |          |   | Gál Ádám |    | 2               |
|                 |    |          |   | Kun Iván |    | 11              |
|                 |    | Tar Emil |   | (üres)   |    | 5               |
| Pék Áron Összeg |    |          |   |          | 52 |                 |
| Végősszeg       |    |          |   |          | 94 |                 |

165. ábra az elszámolási egységek automatikus összesítése hierarchia szerint

Az ábrát vizsgálva megállapíthatjuk, hogy Kis Géza és alárendeltjeinek együttes teljesítménye negyvenkét elszámolási egység. Maga Kis Géza hét egységnyi munkát végzett el. A függőségi struktúrában a második szinten álló Réz Benő és beosztottjainak együttes teljesítményét már nem tudjuk

leolvasni a kimutatásról, mert az áttekinthetőség javítása érdekében, a további részösszegek megjelenítést letiltottam. Maga Réz Benő szintén hét egységnyi munkát végzett el.

#### hierarchikus mezőcsoport

Vegyük számba azt a műveletsort, amellyel a hierarchia szerinti kimutatás-elrendezést létrehoztuk. [1] A kulcs mező bejegyzéseivel tároltuk a munkatársak közvetlen feletteseit. [2] A PATH függvénnyel megállapítottuk a függőségi sort. [3] A PATHITEM függvénnyel létrehoztuk a "szint" mezőket, [4] amelyeket azonos kimutatás-területre helyeztük, [5] a függőségi sor szerinti sorrendben.

Az utolsó két művelet elvégzését a bővítmény "hierarchikus mezőcsoport" szolgáltatása segíti. A modult használva a "szint" mezőket, a függőségi sor szerinti sorrendben, csoportba foglalhatjuk. A létrehozott objektum a hierarchikus mezőcsoport. Azonosítása névvel történik. A hierarchikus mezőcsoport a PowerPivot mezőlista része. Mezői a listán önállóan is elérhetők.

A csoport létrehozását kapcsolatnézetben, a tábla címsorának Hierarchia létrehozása parancsgombjával kezdeményezhetjük. Az új objektum az utolsó mezőnév alatt jelenik meg, Hierarchia<sorszám> felirattal, amely a felhasználói nevével felülírható.

Az egyes mezőket menüjük Hozzáadás hierarchiához parancsával vagy húzással helyezhetjük el az új objektumba. Ha húzással állítjuk össze a csoportot, akkor sorrendben, a csoport nevére (nem alája!) kell húzni a mezőneveket. A bővítmény a csoportban álló mezőkhöz két nevet jelenít meg: a hierarchikus mezőcsoportban használatos nevet és zárójelek között, az eredeti nevet. Utóbbi a PowerPivot szóhasználatban a "forrásoszlop név".

A hierarchiában álló mező menüje tartalmazza a mező pozíciójának módosítására, csoportból történő eltávolítására, a csoportban használandó nevének megadására és eredeti nevének elrejtésére szolgáló parancsokat.



166. ábra

hierarchikus mezőcsoport létrehozása és megjelenítése kapcsolatnézetben és a mezőlistán

A kimutatásba felvett hierarchikus mezőcsoport mezői közül mindig csak az első tételei lesznek megjelenítve, az alárendelt mezők tételeit kibontás művelettel tehetjük láthatóvá. Ha csak egyetlen tétel tartalmát akarjuk látni, akkor a tételnév előtt álló plusz jeles (+) pici vezérlővel, ha a teljes mező alárendeltjeire vagyunk kíváncsiak, akkor a *Kimutatáseszközök, Elemzés, Aktív mező, Mező kibontása* utasítással. A "kibontás" művelet ellentéte az "összecsukás". Végrehajtása a mínusz jeles (-) pici vezérlővel vagy *Kimutatáseszközök, Elemzés, Aktív mező, Mező összecsukása* paranccsal történik.
A hierarchikus mezőcscsoportnak a szűrőlistája is hierarchikus, ezért mezőinek számától függetlenül csak egyetlen szűrőlistával rendelkezik. Ennek vezérlője a rangsorban elől álló mező nevének cellájában áll. A hierarchikus mezőlista nem a bővítmény "találmánya", hiszen az Excelben ilyen a dátum adattípusú mezők szűrőlistája is.

| kollégák                         | vezetők    | <ul> <li>képviselők</li> </ul> | ügynökök | Összeg – egység                                                                                                                                                                                                                                             |
|----------------------------------|------------|--------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ✓ munkatársak                    | 🗄 Kis Géza |                                |          | 42                                                                                                                                                                                                                                                          |
| ezetők                           | 🗏 Pék Áron | 🗏 (üres)                       | (üres)   | 7                                                                                                                                                                                                                                                           |
| épviselők                        |            | 🗏 Ács Ábel                     | (üres)   | 3                                                                                                                                                                                                                                                           |
| wnökök                           |            | 🖃 Pap Hugó                     | (üres)   | 12                                                                                                                                                                                                                                                          |
| Tauthtimes                       |            |                                | Eke Adél | 12                                                                                                                                                                                                                                                          |
| I OVADDI MEZOK                   |            |                                | Gál Ádám | É <u>r</u> tékszűrők                                                                                                                                                                                                                                        |
| Kollega AZ                       |            |                                | Kun Iván |                                                                                                                                                                                                                                                             |
| mentor AZ                        |            | 🗏 Tar Emil                     | (üres)   | Keresés: vezetők                                                                                                                                                                                                                                            |
| SZINT AN<br>SZINT BN<br>SZINT CN |            |                                |          | <ul> <li>₩ Kis Géza</li> <li>Pék Áron</li> <li> (üres)</li> <li> (üres)</li> <li> Ács Ábel</li> <li> Ács Ábel</li> <li> Úres)</li> <li> Pap Hugó</li> <li> Eke Adél</li> <li> Eke Adél</li> <li> Gál Ádám</li> <li> Gál Ádám</li> <li> Cas Faire</li> </ul> |

167. ábra hierarchikus mezőcsoport a kimutatásban, és a csoport szűrőlistája

A kimutatásban csak Pék Áron alárendeltjeit "bontottam ki". Ezt a struktúrát képezi le, a kép jobb szélén álló, szűrőlista. Következesen szűrőlistát írok, az egyszerűség kedvéért, de természetesen mindenütt az egyedi bejegyzések listájáról van szó! ... amelyet a szűrőlista tartalmaz.

Ahogy láttuk, a kimutatásba felvett hierarchikus mezőcsoportnak a bővítmény csak az első, a hierarchia lefelsőbb szintjét mutató mezőjét jeleníti meg. Ez a módszer javítja a kimutatás áttekinthetőségét, de megnehezíti a struktúra vizsgálatát, mert nem látjuk az alárendelteket. Ezen segít, a rettenetes nevű, "leásás" (egy szinttel lejjebb) művelet, amely megjeleníti a kiválasztott tétel alárendeltjeit. Nem kibontja a tételt, mert a végrehajtást követően a hierarchia első szintje eltűnik és csak a második szintet látjuk.

| vezetők    | <ul> <li>Összeg – egység</li> </ul> | képviselők 🗐 | Összeg – egység | ügynökök 🚽 | Összeg – egys |
|------------|-------------------------------------|--------------|-----------------|------------|---------------|
| 🗄 Kis Géza | 42                                  | 🗄 (üres)     | 7               | (üres)     |               |
| 🗄 Pék Áron | 52                                  | 🗄 Ács Ábel   | 3               | Eke Adél   |               |
| Végösszeg  | <b>6</b> 94                         | 🕀 Pap Hugó   | 37              | Gál Ádám   | 1             |
|            | 100                                 | 🕑 Tar Emil   | 5               | Kun Iván   | 6             |
|            |                                     | Végösszeg    | 52              | Végösszeg  | <i>w</i>      |

168. ábra

a rettenetes nevű "leásás" (egy szinttel lejjebb) művelet fázisai

A kép bal oldalán a kiindulási helyzetet látjuk: hierarchikus mezőcsoport a kimutatás Sorok területén. Jelenítsük meg Pék Áron alantasait! Kattintunk a tétel-címkén, majd kiadjuk a *Kimutatáseszközök, Elemzés, Aktív mező, Leásás* utasítást. A művelet eredményét a kép közepén látjuk. A hierarchia ezen a szintjén már dönthetünk, hogy visszatérünk az előző megjelenítéshez, a *Felhatolás* (egy szinttel feljebb) utasítással, vagy inkább Pap Hugó alárendeltjeit kívánjuk látni (egy szinttel lejjebb). A jobb oldali kimutatás szerint az utóbbit választottuk. Erről a szintről már csak "visszafelé vezet az út". Választhatunk, hogy a felettünk álló szintet akarjuk-e megjeleníteni (*Felhatolás* utasítás) vagy a nyilas vezérlő listájából választjuk ki a mezőcsoport egyik elemét.

Összefoglalva, ezzel a modullal csak a hatalmi struktúra egyetlen ágának, a hierarchia egy választott szintjén álló elemeit jeleníthetjük meg. Tehát egy szelektív nézetet látunk, amelyet a bővítmény a mezőcsoport szűrőgombján megjelenített pici tölcsérrel jelöl. A kiválasztott tételcímkék mellet megjelenített villámos-nagyítos parancsgom is ennek a modulnak a vezérlője.



169. ábra a "Gyorsvizsgálat" vezérlő és megjelenített parancs-listája

A képen látható panel tartalmazza aktuális tétel címkéjét, az adatbázis teljes mezőlistáját valamint az aktuális tételhez tartozó lehatolás-felhatolás műveletet.

A kimutatás Szűrők területén a bővítmény a mezőcsoportot egyetlen objektumként jeleníti meg, a már ismertetett strukturált szűrőlistával. A hierarchikus mezőcsoport az Értékek kimutatás-területen nem állhat.

#### egyedi bejegyzések lekérdezése

A DAX öt függvényt biztosít egy mező egyedi bejegyzéseinek összegyűjtésére: DISTINCT, VALUES, FILTERS, ALLSELECTED és ALLNOBLANKROW. A függvények egyetlen argumentuma a vizsgálandó mező: FÜGGVÉNYNÉV( 'táblanév'[mezőnév]). A mezőben álló üres bejegyzéseket mind az öt függvény "egyedi bejegyzésnek" ítéli. Másként fogalmazva, az üres bejegyzéseket tartalmazó mező vizsgálatakor, az ismétlődések eltávolítása után kapott lista egy üres elemmel egészül ki.

Egy mező megjelenített bejegyzéseit a mező saját, közvetlen szűrője és a többi mezőhöz beállított szűrők, a közvetett szűrők befolyásolják. A közvetlen és közvetett szűrők kezelésének módja a bemutatandó függvények első tulajdonsága.

Talán még emlékszünk rá, hogy a kapcsolat több oldali táblájában állhatnak olyan rekordok is, amelyek nem kapcsolódnak az egy oldali tábla egyetlen rekordjához sem. A kapcsolat nélküli rekordokat a bővítmény egy kalap alá veszi és az egy oldali táblában egy üres rekorddal felelteti meg. Az üres "kategoriát" a bővítmény csak a kimutatásban jeleníti meg, a táblában láthatatlan. A tárgyalt függvények második tulajdonsága, hogy az eredményükben szerepel-e ez az üres kategoria vagy sem.

Az egyedi bejegyzéseket összegyűjtő függvények működését adatnézetben a legegyszerűbb szemléltetni. Vegyük példának a "termékek-eladások" táblapárost.

| 1 | név | Pa 💌 | ár |     | szín 🔽 |
|---|-----|------|----|-----|--------|
| 1 | Α   |      |    | 50  | fekete |
| 2 | В   |      |    | 100 | sárga  |
| 3 | С   |      |    | 150 | piros  |
| 4 | D   |      |    | 200 | fekete |

|   | dátum 💌       | név 🐕 🖪 | darab 💽 |
|---|---------------|---------|---------|
| 1 | 2018. 01. 12. | E       | 5       |
| 2 | 2018. 02. 14. | Α       | 4       |
| 3 | 2018. 05. 27. | С       | 5       |
| 4 | 2018. 06. 05. | E       | 1       |
| 5 | 2018. 06. 09. | с       | 4       |
| 6 | 2018. 06. 14. | E       | 3       |
| 7 | 2018. 06. 21  | D       | 4       |

170. ábra a példa táblái: "termékek" és "eladások"

Ahogy a képen látjuk a kapcsolat a táblák "név" mezőivel lett létrehozva. A kapcsolat egy oldalán a "termékek" tábla áll. Az "eladások" táblában megfigyelhetünk egy "E" nevű terméket, amely a "termékek" táblában nincs regisztrálva. Tehát létezik az a bizonyos üres kategoria a "termékek" táblában, amely majd csak a kimutatásban lesz megjelenítve.

Először kérdezzük le az "eladások" tábla "név" mezőjének egyedi bejegyzéseit. Mivel a függvények eredményét nem tudjuk megjeleníteni, ezért az egyéni összesítések képletében megszámláltatjuk az eredményül kapott bejegyzéseket: =COUNTROWS( <függvénynév>( 'eladások'[név] )). A vizsgálatot először szűrés nélkül, majd közvetlen szűréssel, végül közvetett szűréssel végezzük el.

| 1 | dátum 🔽       | név 🛛 💀 🔽 | darab |   |               |           |       |   | 1         |     |           |            |       |   |
|---|---------------|-----------|-------|---|---------------|-----------|-------|---|-----------|-----|-----------|------------|-------|---|
| 1 | 2018. 01. 12. | E         |       | 5 | dátum 💽       | név 🛛 🐕 🜌 | darab |   |           |     |           | _          |       |   |
| 2 | 2018 02 14    | Δ         |       | 4 | 2018. 01. 12. | E         |       | 5 | dátum     | ×   | név 🏰     | <b>*</b> ( | darab | 3 |
| 3 | 2018 05 27    | C         |       | 5 | 2018. 02. 14. | с         |       | 5 | 2018. 01. | 12. | E         |            |       | 1 |
| Ĕ | 2010.03.27.   |           |       | - | 2018, 05, 27, | E         |       | 1 | 2018. 02. | 14. | E         |            |       | 1 |
|   | DIST_t: 5     | FILT_t: 5 |       |   |               | -         |       | - | 2018. 05. | 27. | в         |            |       | 2 |
|   | VALU_t: 5     | ALLS_t: 5 |       |   | DIST_t: 3     | FILT_t: 3 |       |   |           | -   |           | -          |       | _ |
|   |               | ANBR t 5  |       |   | VALU_t: 3     | ALLS_t: 3 |       |   | DIST_t: 2 |     | FILT_t: 5 |            |       |   |
|   |               |           |       | _ |               | ANBR t:5  |       |   | VALU_t: 2 |     | ALLS_t: 5 |            |       |   |
| L |               |           |       |   |               |           |       | - |           |     | ANBR_t: 5 |            |       |   |

171. ábra az "eladások" tábla vizsgálata

A példa jól mutatja, hogy a DISTINCT és a VALUES függvények teljesen egyformán működnek a kapcsolat több oldali táblájában: figyelembe veszik a közvetlen és a közvetett szűrőket is. A FILTERS és az ALLSELECTED már csak a közvetlen szűrőt veszi figyelembe, míg a ALLNOBLANKROW egyiket sem.

Ezután vizsgáljuk meg a kapcsolat egy oldalán álló, "termékek" táblát. Az egyéni összesítések képlete a következő: =COUNTROWS( <függvénynév>( 'termékek'[név] )). A vizsgálatot először szűrés nélkül, majd közvetlen szűréssel, végül közvetett szűréssel végezzük el.

| 1  | név 📲 🖬   | ár 🔽       | szín 💽 | ]        |      |           |          | 5     |      |           |        |   |
|----|-----------|------------|--------|----------|------|-----------|----------|-------|------|-----------|--------|---|
| 1  | A         | 50         | fekete | név      | Pa 🜌 | ár 🗾      | szín 🗾 💌 |       |      |           |        |   |
| 2  | в         | 100        | sárga  | A        |      | 50        | fekete   | név   | 1    | ár 💌      | szín   | 3 |
| 3  | c         | 150        | piros  | в        |      | 100       | sárga    | А     |      | 50        | fekete |   |
| Ē  |           | 150        | pilos  |          |      |           |          | D     |      | 200       | fekete |   |
|    | DIST_e: 4 | FILT_e: 5  |        | <u> </u> |      |           |          |       |      |           |        |   |
|    | VALU_e: 5 | ALLS_e: 5  |        | DIST_    | e: 2 | FILT_e: 3 |          |       |      |           |        | _ |
|    |           |            |        | VALU     | e: 3 | ALLS_e: 3 |          | DIST_ | e: 2 | FILT_e: 5 |        |   |
| -  |           | ANDIC_C. 4 |        |          |      | ANBR e:4  |          | VALU_ | e: 3 | ALLS_e: 5 |        |   |
| L- |           |            |        |          |      |           |          |       |      | ANBR_e: 4 |        |   |
|    |           |            |        |          |      |           |          |       | _    |           |        | _ |

172. ábra a "termékek" tábla vizsgálata

A kép tanúsága szerint a kapcsolat egy oldalán álló táblában a DISTINCT és az ALLNOBLANKROW függvények nem veszik figyelembe a láthatatlan üres kategoriát, a többiek igen.

Az egyedi bejegyzéseket összegyűjtő függvények kimutatásba helyezésével derül fény a függvények harmadik tulajdonságára. Vegyünk egy példát ennek a tulajdonságnak a bemutatására is. Egyetlen táblát vizsgálunk, amelynek neve "A".

| AZ | betű | római | szín   | DIS  | Г    | ró       | mai 💌 |       |      |     | FILT |   | római | Ŧ |    |      |
|----|------|-------|--------|------|------|----------|-------|-------|------|-----|------|---|-------|---|----|------|
| 01 | Α    | - I.  | barna  | beti | i [  | <b>T</b> | Т.    | н.    | Ш.   |     | betű | - | Т.    |   | н. | ш.   |
| 02 | Α    | - I   | fekete | Α    |      |          | 1     | 1     |      | ] [ | Α    |   | 2     |   | 2  |      |
| 03 | Α    | - I.  | fekete | В    |      |          |       | 1     |      |     | в    |   |       |   | 2  |      |
| 04 | Α    | - I.  | kék    | C    |      |          | 1     |       | 2    |     | С    |   | 2     |   |    | 2    |
| 05 | Α    | - II. | kék    |      |      |          |       |       |      |     |      |   |       |   |    |      |
| 06 | В    | - II. | barna  | VAL  | J    | rói      | mai 💌 |       |      |     | ASEL |   | római | - |    |      |
| 07 | В    | П.    | barna  | betí | · [  | •        | Т.    | н.    | III. |     | betű | - | ь.    |   | н. | III. |
| 08 | В    | - 11. | kék    | Α    |      |          | 1     | 1     |      |     | А    |   | 2     |   | 2  |      |
| 09 | В    | III.  | fehér  | В    |      |          |       | 1     |      |     | в    |   |       |   | 2  |      |
| 10 | С    | - I   | kék    | С    |      |          | 1     |       | 2    |     | С    |   | 2     |   |    | 2    |
| 11 | С    | - I.  | zöld   |      |      |          |       |       |      |     |      |   |       |   |    |      |
| 12 | С    | - I   | zöld   | szí  | 1    |          |       |       | ¥    |     | ANBR |   | római | Ŧ |    |      |
| 13 | С    | - I.  | zöld   |      |      |          |       |       |      |     | betű | - | ь.    |   | н. | Ш.   |
| 14 | С    | III.  | barna  | b    | arna | а        |       | fehér |      |     | Α    |   | 6     |   | 6  |      |
| 15 | С    | III.  | kék    |      |      | _        |       | 1.41  |      |     | В    |   |       |   | 6  |      |
| 16 | С    | III.  | kék    |      | eket | e        |       | кек   |      |     | С    |   | 6     |   |    | 6    |
| 17 | С    | III.  | kék    | s    | árga |          |       | zöld  |      |     |      |   |       |   |    |      |
| 18 | С    | 111.  | sárga  |      |      |          |       |       |      |     |      |   |       |   |    |      |

173. ábra egyedi bejegyzéseket összegyűjtő függvények a kimutatásban

A képen a tábla forrását, az elemzésére létrehozott öt kimutatást és közös külső szűrőjüket látjuk. Minden kimutatás egy-egy egyéni összesítést tartalmaz, képletükben a tárgyalt függvényekkel: =COUNTROWS( <függvénynév>( A[szín] )). Csak a kék és a sárga rekordokat vizsgáltuk.

A FILTERS, az ALLSELECTED és az ALLNOBLANKROW függvényeket tartalmazó egyéni összesítések nem a megszokott módon viselkednek: nem a sor és oszlopmező tételei által meghatározott rekordok statisztikai értékét, hanem a teljes rekord-halmazra vonatkozó értéket jelenítenek meg, az összes nem üres "kategoriában". Másként fogalmazva: bontatlan statisztikai értéket szolgáltatnak.

Foglaljuk össze az egyes függvények jellemzőit. A DISTINCT és a VALUES figyelembe veszik a közvetlen és közvetett szűrőket is, de a DISTINCT függvény a láthatatlan bejegyzést nem veszi figyelembe az egy oldali táblában. A FILTERS és az ALLSELECTED csak a közvetlen szűrőket figyelik, de mindketten látják az üres kategoriát. Az ALLNOBLANKROW nem veszi figyelembe a szűrőket és eredményéből hiányzik az egy oldali tábla üres kategoriája is. A FILTERS, az ALLSELECTED és az ALL-NOBLANKROW bontatlan statisztikai értéket szolgáltatnak a kimutatásban.

| függvény<br>neve | közvetlen szűrés<br>figyelése | közvetett szűrés<br>figyelése | üres kategoria<br>figyelése | kimutatás-szerkezet<br>figyelése |  |  |
|------------------|-------------------------------|-------------------------------|-----------------------------|----------------------------------|--|--|
| DISTINCT         | ia                            | o.p.                          | nem                         | igan                             |  |  |
| VALUES           | Ig                            | en                            |                             | igen                             |  |  |
| FILTERS          | igan                          | nom                           | igen                        | nem                              |  |  |
| ALLSELECTED      | igen                          | nem                           |                             |                                  |  |  |
| ALLNOBLANKROW    |                               | nem                           |                             | -                                |  |  |

174. ábra az egyedi bejegyzéseket összegyűjtő függvények rendszerezése

Az ALLSELECTED és az ALLNOBLANKROW függvényeknek van egy tábla-argumentumos változatuk is, de a tárgyalt függvényektől eltérő funkciójuk miatt, a következő fejezetben ismertetem őket.

# szűrő-kezelés a képletben

Az egyéni összesítések képletének kiértékelésekor szabályozni tudjuk a szűrők figyelembe vételét. Két függvény áll rendelkezésünkre erre a célra: az ALL, az ALLEXCEPT valamint az előző fejezetben tárgyalt ALLSELECTED és az ALLNOBLANKROW tábla-argumentumos változatai.

Az ALL függvény két változatát használhatjuk: a tábla-argumentumos és a mező-argumentumos változatát. Az előbbi esetében csak egyetlen táblanevet kell megadnunk argumentumként, és a bővítmény figyelmen kívül hagyja a tábla összes szűrőjét a kifejezés kiértékelésekor. A másik változat argumentumai mezőnevek, amelyek szűrőit a bővítménynek nem kell számításba venni, de az argumentumok között nem szereplő mezőkéit igen. Az ALLEXCEPT függvény az ALL mező-argumentumos változatának ellentéte: melyik szűrőt kell figyelembe venni az egyéni összesítés képletének kiértékelésekor. Argumentumlistája: tábla ; mező<sub>1</sub> ; mező<sub>2</sub> ; mező<sub>3</sub>... mező<sub>n</sub>. A függvény az első argumentumával meghatározott táblában csak azoknak a mezőknek a szűrőit veszi figyelembe, amelyeket a további argumentumai deklarálnak.

Példaként vegyük egy táblát, neve "A", tíz rekorddal és néhány mezővel. Három egyéni összesítés hoztam létre a függvények működésének bemutatására. A táblát adatnézetben vizsgáljuk.

| l | AZ 🌌     | betűk 🗾 | számok 💌 | római  |   | AZ 🔽     | betűk 🛃  | számok 🔽 | rć  |
|---|----------|---------|----------|--------|---|----------|----------|----------|-----|
| L | 6        | Α       | 1        | II.    | 1 | 1        | Α        | 2        | I.  |
| 2 | 7        | Α       | 2        | III. ( | 2 | 5        | Α        | 2        | I.  |
| 3 | 8        | В       | 1        | П.     | 3 | 6        | Α        | 1        | 11. |
| 4 | 9        | В       | 2        | I.     | 4 | 7        | Α        | 2        | П   |
| 5 | 10       | Α       | 1        | П.     | 5 | 10       | Α        | 1        | П   |
|   | ALLt: 10 | ALLm: 5 | ALLE: 10 |        | - | ALLt: 10 | ALLm: 10 | ALLE: 5  |     |
|   |          |         |          |        |   |          |          |          |     |



175. ábra az ALL és az ALLEXCEPT függvények bemutatása

Először az "AZ" mezőhöz állítottam be szűrőt: Csak az ötnél nagyobb azonosítójú rekordokat jelenítsd meg! Ezt láthatjuk a kép bal oldalán. A második esetben a "betűk" mezőt szűrtem: Csak az "A" betűs rekordokra vagyok kíváncsi! Ennek a műveletnek az eredményét a kép jobb oldalán helyeztem el. Az "ALLt nevű egyéni összesítés képletében álló ALL függvény tábla-argumentumos változatának működése egyértelmű. A táblát szűrők nélküli állapotában vizsgálja. Az "ALLm" és az "ALLE" nevű egyéni összesítésekben a mező-argumentumok a figyelmen kívül hagyandó (ALL) illetve a figyelendő (ALLEXCEPT) mezőket határozzák meg. Másként fogalmazva, mely mezők szűrői nem befolyásolják (ALL), illetve, mely mezők szűrői befolyásolják (ALLEXCEPT) az eredményt.

Az ALL mező-argumentumos és az ALLEXCEPT függvény szintaktikáját összehasonlítva látjuk, hogy utóbbi első argumentumával a táblát is deklarálnunk kell. Mindkét függvény a táblanevet is megköveteli a mezőnevek előtt!

Az ALLSELECTED és az ALLNOBLANKROW függvények tábla-argumentumos változatai, az egyetlen argumentumukkal meghatározott tábla rekordjait adják eredményül, az ALLSELECTED a szűrők figyelembe vételével, az ALLNOBLANKROW a szűrők figyelmen kívül hagyásával. A két függvény bontatlan statisztikai értéket jelenít meg, minden nem üres kategoriában. Az ALLSELECTED argumentum nélkül is használható a CALCULATE függvénybe ágyazottan.



176. ábra

az ALLSELECTED és ALLNOBLANKROW függvények tábla-argumentumos változatai kimutatásban

A képen látható kimutatás a 171. ábra táblája alapján készült. A tábla a "római" mező "I." bejegyzéseire lett szűrve. Az "ALLS" képletében az ALLSELECTED argumentum nélkül áll a CALCULATE függvénybe ágyazottan: CALCULATE( COUNT( [AZ] ); ALLSELECTED( )). A másik egyéni összesítés, "ANBR", képlete az ALLNOBLANKROW tábla-argumentumos változatát tartalmazza: CALCULATE( COUNT( [AZ] ); ALLNOBLANKROW( A )).

Végül lássunk egy példát a szűrőkezelés gyakorlati alkalmazására! A "bevételek" tábla egy vállalat alkalmazottainak árbevételeit rögzíti, a telephely és az osztály feltüntetésével.

|   | bevétel AZ  🔽 | név 🔽    | telephely 🔽 | osztály 🔽 | bevétel 🔽  |
|---|---------------|----------|-------------|-----------|------------|
| 1 | 1             | Vitéz L. | Vác         | A         | 39 000 Ft  |
| 2 | 2             | Pécsi S. | Göd         | В         | 100 000 Ft |
| 3 | 3             | Hajós J. | Göd         | С         | 101 000 Ft |
| 4 | -             | Witéz L. | Vác         | A         | 129.000 Ft |

177. ábra a "bevételek" tábla részlete

Kimutatással elemezni szándékozom az egyes munkatársak teljesítményét. Meg akarom állapítani [1] a kollégák összesített árbevételének arányát a szűréssel kiválasztott munkatársak összesített bevételéhez viszonyítva, [2] valamint a vállalat összesített bevételéhez viszonyítva. Három mezőhöz kívánok szűrési lehetőséget biztosítani: "név", "telephely" és "osztály". A "név" mezőt a kimutatás sorterületére szánom, tehát a szűrése a kimutatás eszközeivel történik, a másik két mező szűrését külső szűrővel oldom meg.

Az árbevételek arányának megállapításához két egyéni összesítést hozok létre. Az első képlete a következő lesz: a vizsgált munkatárs összes bevétele osztva a megjelenített kollégák összesített bevételeinek összegével, figyelembe véve a "telephely", az "osztály" mező szűrőit. A "név" mező esetleges szűrőjével egyenlőre ne foglalkozzunk.

A másik egyéni összesítés képletének megszerkesztése nem fog problémát jelenteni: a vizsgált munkatárs összesített bevételét el kell osztani a vállalat teljes bevételével. A vállalati szintű összesítést nem befolyásolhatják a szűrők! Lássuk a kimutatást és a két egyéni összesítés képletét!



178. ábra az elkészített kimutatás

Pillanatnyilag a kimutatás az érdi A osztály munkatársait mutatja. Vizsgáljuk meg Török Ferenc teljesítményét. "marány": ha a megjelenített dolgozók összesített bevételét 100%-nak vesszük, akkor Török Ferenc bevételei ennek 25,8%-t adják. "tarány": a vállalat teljes bevételének 9,3%-t Török Ferenc bevételei teszik ki, és a vizsgált időszak árbevételeinek 36%-t az érdi A osztály adja.

Amikor e két tulajdonságtól függetlenül, csak meghatározott munkatársakat jelenítünk meg a "név" mező szűrésével, akkor a "marány" értéke megegyezik a "tarány" értékével. Ha a problémát az ALLEXCEPT függvény kiegészítésével próbáljuk orvosolni, tehát a "név" mezőt is felsoroljuk a függvény argumentumaként, akkor az egyéni összesítés minden értéke 100%-ra módosul.

| név 🖵     | marány | tarány | név       | ,Т | marány  | tarány |
|-----------|--------|--------|-----------|----|---------|--------|
| Benkő P.  | 5,0 %  | 5,0 %  | Benkő P.  |    | 100,0 % | 5,0 %  |
| Győri H.  | 10,7 % | 10,7 % | Győri H.  |    | 100,0 % | 10,7 % |
| Hajós J.  | 8,1 %  | 8,1 %  | Hajós J.  |    | 100,0 % | 8,1 %  |
| Végösszeg | 23,9 % | 23,9 % | Végösszeg |    | 100,0 % | 23,9 % |

179. ábra a név szerinti szűrés eredménye és az ALLEXCEPT függvény kiegészítésének hatása

A megoldás az ALLSELECTED függvény, amely az egyetlen argumentumával meghatározott mező minden megjelenített bejegyzését adja eredményül a közvetlen szűrők figyelembe vételével, de a kimutatás szerkezetétől függetlenül. A "marány" egyéni összesítés végleges képlete: SUM( [bevétel] ) / CALCULATE( SUM( [bevétel] ) ; ALLSELECTED( 'bevételek'[név] )).

## szűrő-információk

A DAX szűrő-információs függvényei két kérdést tudnak megválaszolni: szűrt-e a vizsgált mező, illetve, ha szűrt, akkor a szelektív megjelenítés egyetlen egyedi bejegyzést eredményezett-e. A válasz, azaz a függvények eredménye, logikai adattípusú.

Az ISFILTERED és az ISCROSSFILTERED függvények akkor adnak IGAZ eredményt, ha az argumentumukkal deklarált mező megjelenítését szűrők befolyásolják. Az ISFILTERED csak a közvetlen szűrőt ismeri fel, az ISCROSSFILTERED a közvetett szűrőket is jelzi. Az ISCROSSFILTERED leírásában szerepel még a kapcsolódó tábla szűrőjének felismerése is, de erről nem tudtam meggyőződni, mert az én gépemen, saját tesztfeladataimban ez a funkció nem működött.

A függvényeket egy vállalat dolgozóinak adatait tartalmazó táblán mutatom be. A tábla neve "munkatársak". Két egyéni összesítést hoztam létre a létszám megállapítására.

| 1 | név 🔽             | született 🛛 💽 | telephely 🔽 | osztály 🗾 | státusz 🏼 🖅 | angol      |  |  |  |  |
|---|-------------------|---------------|-------------|-----------|-------------|------------|--|--|--|--|
| 1 | Abonyi Emőke      | 1973. 03. 16. | Ócsa        | pénzügy   | beosztott   |            |  |  |  |  |
| 2 | Agócs Aranka      | 1970. 12. 03. | Paks        | tervezés  | beosztott   |            |  |  |  |  |
| 3 | Alföldi Adalbert  | 1957. 04. 05. | Baja        | pénzügy   | beosztott   |            |  |  |  |  |
| 4 | Alföldi Katalin   | 1977. 11. 02. | Ócsa        | szállítás | beosztott   | középfokon |  |  |  |  |
| 5 | Almási Jolán      | 1950. 12. 22. | Vác         | szállítás | beosztott   | /          |  |  |  |  |
| 6 | Arató Pál         | 1959. 06. 04. | Ócsa        | szállítás | beosztott   |            |  |  |  |  |
| Γ | létsz ISF: (üres) |               |             |           |             |            |  |  |  |  |
|   | létsz ISCF: 481   |               |             |           |             |            |  |  |  |  |
|   |                   |               |             |           |             |            |  |  |  |  |
|   |                   |               |             |           |             |            |  |  |  |  |

Iétsz ISF =IF( ISFILTERED( [telephely] ) ; COUNTA( [név] )) Iétsz ISCF =IF( ISCROSSFILTERED( [telephely] ) ; COUNTA( [név] ))

A kép tanúsága szerint a megjelenített rekordok körét a "státusz" mező szűrője határozza meg. A "létsz ISF" egyéni összesítés képletében álló ISFILTERED függvény eredménye HAMIS, mert a "telephely" mező nincs szűrve, ezért az IF függvény üres eredményt ad. A "létsz ISCF" egyéni összesítés képletében az IF függvény második argumentumában álló művelet lesz végrehajtva, mert az ISCROSSFILTERED függvény a "telephely" mező közvetett szűrése miatt, IGAZ értéket ad.

A függvényeket kimutatásba helyezve furcsa jelenséggel találkozunk. Hozzunk létre két egyéni összesítést! "ISF":=ISFILTERED( [telephely] ) és "ISCF":= ISCROSSFILTERED( [telephely] ). Amenynyiben a "telephely" mező a kimutatás sor- vagy oszlopterületén áll, akkor mindkét egyéni összesítés IGAZ értékeket ad a kimutatás minden cellájában, ha van szűrő beállítva a "telephely" mezőhöz, ha nincs. Ha eltávolítjuk a "telephely" mezőt a sor illetve az oszlopterületről, akkor már csak az "ISCF" ad IGAZ eredményt, az "ISF" már minden kategoriában HAMIS. A jelenség magyarázata a kimutatás lényegéből fakad. A Pivot-tábla a sor- és oszlopmező tételei szerinti csoportosításban vizsgálja a statisztikai mező adatait. Egy-egy csoport statisztikai értékének megállapításához a rekordokat szűrni kell a sor- és oszlopmező meghatározott tételeivel. Tehát a kimutatás struktúrája egy szűrési metódust határoz meg a statisztikai számításhoz.

| státusz 🔻   | Értékek | osztály 💌<br>pénzügy | szállítás | tervezés |
|-------------|---------|----------------------|-----------|----------|
| beosztott   | ISF     | HAMIS                | HAMIS     | HAMIS    |
|             | ISCF    | IGAZ                 | IGAZ      | IGAZ     |
| vezető      | ISF     | HAMIS                | HAMIS     | HAMIS    |
|             | ISCF    | IGAZ                 | IGAZ      | IGAZ     |
| felsővezető | ISF     | HAMIS                | HAMIS     | HAMIS    |
|             | ISCF    | IGAZ                 | IGAZ      | IGAZ     |

181. ábra az ISFILTERED és az ISCROSSFILTERED függvények kimutatásban

<sup>180.</sup> ábra az ISFILTERED és a ISCROSSFILTERED függvények adatnézetben

A képen látható kimutatás-elrendezésben tehát a "státusz" és az "osztály" mező csoportosítja, másként fogalmazva, közvetett módon szűri a "telephely" mezőt. Ezt a hatást az ALL függvénnyel semlegesíthetjük az "ISCF" képletében: =CALCULATE( ISCROSSFILTERED( [telephely] ); ALL( 'munkatársak'[státusz]; 'munkatársak'[osztály] )).

A kimutatás-szerkezet szűrő hatásán felül a közvetlen szűrés hatását is kikapcsolhatjuk, ha az ALL függvény argumentumai közé felvesszük a "telephely" mezőt is, így az "ISCF" csak a közvetett szűrést fogja jelezni IGAZ eredményével.

Nézzünk egy példát az ISFILTERED függvény kimutatásbeli alkalmazásának szemléltetésére. Maradjunk a "munkatársak" tábla vizsgálatánál. A nemzetközi kapcsolatokkal is rendelkező vállalatnál fontos szempont az alkalmazottak angol nyelvtudása. Az "angol" mező bejegyzései erről adnak információt. Kimutatással elemezni szeretném a munkatársak angol nyelvtudását. Kíváncsi vagyok, hányan és milyen szinten beszélik az angolt az egyes termelési egységekben illetve az azonos státuszban dolgozók csoportjaiban.

A kimutatás sor- és oszlopmezői a "telephely" és az "osztály" mező lesznek. Két külső szűrőt hozok létre az "angol" és a "státusz" mezőhöz. Ha az "angol" mező nincs szűrt állapotban, akkor a létszám adatokat szeretném megjeleníteni a kimutatás struktúrájának és a beállított szűrőknek megfelelően. Ha az "angol" mező szűrt állapotban van, akkor látni szeretném a csoport létszámát és az angolul beszélők létszámát is. Valahogy így:



182. ábra a példa kimutatása szűrés nélkül és szűrt állapotban

A felső kimutatás és a bal oldalon álló elemei a szűretlen állapotot mutatják. Ezek szerint a bajai telephely legnépesebb osztálya hatvanöt főt foglalkoztat, ami a vállalati létszámnak több mint a tíz százaléka. Az alsó kimutatás és a jobb oldalon álló elemei már a szűrt állapotot mutatják. A termelési egységek beosztott státuszban dolgozó munkatársai közül azokat számláltattam meg, akik legalább középfokon beszélik az angolt. Ezek szerint a bajai szállítási osztályon dolgozó ötvenkilenc beosztott kolléga egyharmada legalább középfokon beszéli az idegen nyelvet.

Az egyéni összesítés statisztikai vizsgálatát tehát az "angol" mező közvetlen szűrője határozza meg. Amennyiben a mezőnek nincs közvetlen szűrője, akkor a létszám-adatokat kell megjelenítenie, ha az "angol" mező szelektív megjelenítését közvetlen szűrés határozza meg, akkor az angolul tudok számát kell megállapítania, a kimutatás struktúrájának és a szűrőinek megfelelően.



183. ábra az "angol EÖ" képlete

A FORMAT függvénnyel az angolul beszélők számának megjelenítését szabályoztam. A függvény ebben a képletben a program SZÖVEG függvényével azonos funkciót lát el: az első argumentumával

meghatározott számot a második argumentumával deklarált formában írja ki. A mi esetünkben mindig két számjeggyel, a szép megjelenítés érdekében.

A másik kérdésre, azaz a szűrés egyetlen egyedi bejegyzést eredményezett-e, a HASONEFILTER és HASONEVALUE függvények adnak választ. A HASONEFILTER csak a közvetlen, a HASONEVALUE a közvetlen és közvetettet szűrőket is figyelembe veszi. A függvények eredménye azonos a COUNT-ROWS(FILTERS( <mezőnév> ) = 1 és a COUNTROWS( VALUES( <mezőnév> ) = 1 kifejezések eredményével.

A két függvényt egy három-mezős táblán, melynek neve "A", mutatom be. Három egyéni összesítést készítettem. Mindhárom a "betűk" mezőt vizsgálja.



184. ábra a HASONEFILTER és a HASONEVALUE függvények bemutatása

A kép bal oldalán a "betűk" mezőt szűrtem a "B" betűre. A megjelenített két B betűs rekord ellenére a HASONEFILTER függvény eredménye IGAZ, mert a közvetlen szűrés egyetlen egyedi bejegyzést eredményezett a B betűt. Az ábra jobb oldalán a "számok" mezőhöz állítottam be megjelenítési feltételt: Csak a hármas számot tartalmazó rekordokat mutasd! A HASONEFILTER függvény most HAMIS eredményt ad, annak ellenére, hogy a "betűk" mező csak egyetlen egyedi bejegyzést mutat, az E betűt. A függvény ebben az esetben is ugyanarra a kérdésre válaszol, mint az előbbi helyzetben: A "betűk" mező közvetlen szűrése egyetlen egyedi bejegyzést eredményez? Mivel nincs közvetlen szűrés, ezért a válasz HAMIS.

Nézzünk egy egyszerű példát a HASONEVALUE függvény alkalmazására. Egy budapesti vállalat kerületi egységeinek bevételeit a "bevételek" táblában tárolom. Egy "segéd" nevű táblát is létrehoztam, amelynek segítségével a összesített bevétek számformátumát tudom majd egyszerűen beállítani a kimutatásban. A két tábla között nincs kapcsolat.

| i | bevétel AZ 🛛 🔽 | kerület 🔽   | kerület i  🔽 | bevétel 🔽     |
|---|----------------|-------------|--------------|---------------|
| 1 | 001            | V. kerület  | 1            | 25 173 400 Ft |
| 2 | 002            | V. kerület  | 1            | 20 385 400 Ft |
| 3 | 003            | X. kerület  | 4            | 20 530 000 Ft |
| 4 | 004            | IX. kerület |              | 16 351 500 Et |

185. ábra a két tábla adatnézetben

A bevételeket, kerületenkénti bontásban, kimutatással fogom összesíteni. Mivel a bevételek már a rekordokban is milliós nagyságrendűek, ezért a kimutatásban egy a "pénznem" mezőn alapuló külső szűrővel, lehetővé teszem az ezerforintos és a millióforintos megjelenítést is.

| kerület   | -     | ÖSSZ          | pénznem 🌾 |
|-----------|-------|---------------|-----------|
| V. ke     | rület | 397 785 eFt   |           |
| VII. ke   | rület | 341 267 eFt   | Ft        |
| IX. ke    | rület | 269 098 eFt   |           |
| X. ke     | rület | 395 692 eFt   | eFt       |
| XI. ke    | rület | 254 765 eFt   |           |
| XV. ke    | rület | 287 667 eFt   | mFt       |
| Végösszeg |       | 1 946 275 eFt |           |

186. ábra a kimutatás a "pénznem" mező külső szűrőjével

A vállalatnak hat kerületben vannak részlegei, ezek összesített bevételeit láthatjuk a képen, ezerforintos megjelenítésben. Az ezer és a millió Forintos megjelenítés egy osztáson alapul. Az összesített bevételt elosztjuk a kiválasztott pénznem "szám" mezőjében álló bejegyzéssel. A képlet kiértékelése azonban hibát eredményez, ha szűréssel nem választunk pénznemet, ezért a végrehajtást feltételhez kötöttük. Az "osztás" egyéni összesítés képlete: =IF(HASONEVALUE('segéd'[szám]); SUM( [bevétel] ) / VALUES( 'segéd'[szám] )). Az "össz" nevű egyéni összesítés képletében ellenőriztem a szűrés eredményét, előírtam a számok csoportosításának módját és meghatároztam a megjelenítendő pénznem jelölőt.



187. ábra az "össz EÖ" egyéni összesítés képlete

# szűrőfüggvények

A DAX szűrőfüggvényeivel egy táblából válogathatjuk ki azokat a rekordokat, amelyeket a bővítménynek a gazda-képlet kiértékelésekor figyelembe kell vennie. A szelektálás a felhasználó által szerkesztett feltételeken alapul. A szűrő-kifejezéseket az alkalmazott függvény feltétel-argumentumaival kell deklarálnunk.

Kezdjük a nevében is szűrő FILTER-rel, amely már többször előfordult a példáinkban. Elemezzünk egy kéttáblás adatbázist: "munkahelyek" és "munkatársak". Kimutatással vizsgálni szeretném a vállalatnál dolgozó, fiatal nők helyzetét.





Mivel a munkatársak táblában nincs rögzítve sem a munkatársak neme, sem születési dátuma, ezért a kollégák nemét és életkort a "személyi szám" mező segítségével állapítottam meg. Az "fnők" egyéni összesítés képlete két beágyazott FILTER függvényt tartalmaz: a külső leválogatja az 1979 után születetteket, azokból a női rekordokból, amelyeket az első argumentumában álló, belső FIL-TER függvény választ ki a munkatársak táblából. Az így kapott rekordokat a COUNTROWS függvénynyel számoltatjuk meg.



189. ábra a feladat megoldása egymásba ágyazott FILTER függvényekkel

A FILTER függvény egyetlen szűrő-argumentumában több feltételt is megadhatunk logikai operátorok használatával. =COUNTROWS( FILTER( 'munkatársak'; 'munkatársak'[személyi szám] > 2000000000 && MOD( TRUNC( 'munkatársak'[személyi szám] / 100000000 ); 100) > 79 ))

> 190. ábra ÉS operátor a FILTER szűrő-argumentumában

A képen az ÉS logikai operátort kék betűszínnel emeltem ki. A fenti módszerrel egyetlen FILTER függvénnyel is eredményre jutottunk. Most vegyünk egy összetett feltétel-rendszert tartalmazó feladatot. Állapítsuk meg a bajai és a váci telephely dolgozóinak számát, de csak azokat a kollégákat vegyük számba, akinek legalább kilenc bónusz-pontjuk van!

> =COUNTROWS( FILTER( 'munkatársak' ; RELATED( munkahelyek[város] ) = "baja" || RELATED( munkahelyek[város] ) = "vác" && 'munkatársak'[bónusz] > 8 ))

> > 191. ábra logikai operátorok a FILTER szűrő-argumentumában

Adatnézetben a teljes táblára vonatkozóan az egyéni összesítés eredménye száznegyvennyolc. Ahhoz képest, hogy a munkatársak táblában összesen tíz rekordban találunk kilences vagy tízes bejegyzést, ez kissé soknak tűnik. A jelenség magyarázata: a DAX-ban a két logikai operátor nem egyenrangú, tehát a kiértékelés nem balról jobbra halad, hanem először az ÉS azután a VAGY kifejezések lesznek kiértékelve. Természetesen zárójelek vagy az IN operátor használatával már a helyes eredményre jutunk.

> =COUNTROWS( FILTER( 'munkatársak'; ( RELATED( munkahelyek[város]) = "baja" || RELATED( munkahelyek[város]) = "vác") && 'munkatársak'[bónusz] > 8 )) =COUNTROWS( FILTER( 'munkatársak'; RELATED( munkahelyek[város]) IN { "baja"; "vác" } && 'munkatársak'[bónusz] > 8 ))



A felső képletben zárójelekkel, az alsóban az IN operatorral kényszerítettük ki a helyes kiértékelési sorrendet. Ha az IN operátor listája a szokásos, és nem kapcsos zárójelek között áll, akkor a #HIBA karakterláncot kapjuk eredményül. A hiba okaként ezt az üzenetet olvashatjuk: «Szemantikai hiba: A következő operátor vagy kifejezés ebben a környezetben nem támogatott: "()".» Természetesen ez nem szemantikai, hanem szintaktikai hiba.

Ne felejtsük el, hogy a DAX-nak nincs NOT IN operátora, tehát az IN tagadása közvetve történik. Például, hányan dolgoznak a vállalatnál a bajai és a váci telephely munkatársai kivételével?

> =COUNTROWS( FILTER( 'munkatársak' ; NOT RELATED( munkahelyek[város] ) IN { "baja" ; "vác" } ))

> > 193. ábra az IN operátor listájának tagadása

A feltétel deklarálása a CONTAINSROW függvénnyel is történhet. Hányan dolgoznak az "előkészítés"-ben illetve a "gyártás"-ban. Ez a két terület a munkahelyek tábla részleg mezőjének egy-egy tétele.

> =COUNTROWS( FILTER( 'munkatársak' ; CONTAINSROW( { "előkészítés" ; "gyártás" } ; RELATED( munkahelyek[részleg] ))))

> > 194. ábra VAGY logikai viszony a CONTAINSROW függvényben

A függvény első argumentuma kapcsos zárójelek között, pontosvesszővel elválasztva tartalmazza a második argumentumában álló mező számításba veendő tételeit. A kapcsos zárójelek itt is a VAGY logikai viszony alkalmazását jelentik. De a függvény kezelni tudja a logikai ÉS viszonyt is. Lássunk erre is egy példát.

=COUNTROWS( FILTER( 'munkatársak' ; CONTAINSROW( { ( "baja" ; "előkészítés" ; 7 ) ; ( "vác " ; "gyártás" ; 6 ) } ; RELATED( munkahelyek[város] ) ; RELATED( munkahelyek[részleg] ) ; 'munkatársak'[bónusz] )))

> 195. ábra ÉS és VAGY logikai viszony a CONTAINSROW függvényben

Ezzel a képlettel a hét bónusz-pontos bajai előkészítők és a hatpontos váci gyártók létszámát kapjuk meg. A CONTAINSROW függvény első argumentuma ebben a képletben is a számításba veendő tételeket tartalmazza kapcsos zárójelek között, de most két zárójeles csoportban. A két zárójeles egységet és a zárójelek között álló tételeket is pontosvessző választja el. A két zárójeles egység VAGY, a zárójeleken belül álló tételek ÉS logikai viszonyban vannak egymással. A függvény további argumentumai a szűrt mezők, a zárójelek között álló tételekkel azonos sorrendben.

 $\begin{aligned} & \quad \text{CONTAINSROW}(\\ \{(\text{tétel}_1; \text{tétel}_A; \text{tétel}_1; \dots); (\text{tétel}_2; \text{tétel}_B; \text{tétel}_1; \dots); (\text{tétel}_3; \text{tétel}_C; \text{tétel}_{III}; \dots) \dots \};\\ & \quad \text{mez}\tilde{o}_1; \text{mez}\tilde{o}_2; \text{mez}\tilde{o}_3; \dots )\end{aligned}$ 

196. ábra a CONTAINROW függvény argumentumai

Figyelem, figyelem! A CONTAINSROW függvény leírása a névkiegészítőben, szerkesztés közben megjelenített argumentumlistája és hibaüzenetei hibásak!

A CALCULATE függvénnyel már találkoztunk. Működésének lényege: az első argumentumával meghatározott műveletet a további argumentumaival deklarált szűrőkkel kiválasztott rekordokban végzi el. Az eredeti, fiatal nők elemzésére létrehozott egyéni összesítést ezzel a függvénnyel is megfogalmazhatjuk.



197. ábra a fiatal nők számának meghatározása a CALCULATE függvénnyel

Vegyük sorra a CALCULATE függvény legfontosabb tulajdonságait: [1] első argumentuma kiértékelésének egyetlen adatot kell eredményeznie, [2] további argumentumai szűrőfeltételek, vagy [3] táblanevek, vagy [4] egy táblát eredményező kifejezés, [5] amennyiben a függvény a kapcsoló mezők azonos bejegyzéseit használja "szűrőként", akkor a második argumentum elhagyható, [6] a szűrő-argumentumok logikai ÉS viszonyban állnak egymással, [7] egy argumentum több, ugyanarra a mezőre vonatkozó szűrőt is tartalmazhat logikai operátorokkal összekapcsolva.

Nézzünk egy egyszerű példát az ötödik tulajdonság bemutatására: mikor hagyható el a CALCU-LATE függvény második argumentuma? Van két táblánk: "T1" és "T2".

| 4 | T1 AZ 💽 | betűk  🚡 💌 | ÖSSZ1 🛛 💌 | ÖSSZ2 🛛 💌 |
|---|---------|------------|-----------|-----------|
| 1 | 1       | Α          | 15        | 15        |
| 2 | 2       | В          | 10        | 10        |

| 1 | T2 AZ 🗾 🔽 | betűk 🦷 | 🛛 🗹 🖬 | mok 🔽 |
|---|-----------|---------|-------|-------|
| 1 | 1         | Α       |       | 7     |
| 2 | 2         | Α       |       | 3     |
| 3 | 3         | В       |       | 6     |
| 4 | 4         | В       |       | 4     |
| 5 | 5         | Α       |       | 5     |

198. ábra a két táblát a "betűk" mezők azonos értékei kapcsolják össze

A "T1" tábla ÖSSZ1 számított mezőjének képlete az eddigi ismereteink szerint így alakulna: CALCU-LATE( SUM( T2[számok] ); T2[betűk] = EARLIER( [betűk] )). A CALCULATE függvény szűrő-argumentuma ebben a képletben a kapcsoló mezők azonos bejegyzéseit deklarálja. Ha ez így van, akkor a CALCULATE függvény második argumentuma elhagyható. ÖSSZ2: CALCULATE( SUM( T2[számok] )).

A hetedik tulajdonság szerint egy szűrő-argumentumban több, ugyanarra a mezőre vonatkozó, logikai operátorokkal összekapcsolt feltétel is állhat. Nézzünk erre egy példát: a "vevők" táblában meg szeretnénk állapítani a dunántúli kereskedők számát.

| 1 | vevő AZ 🛛 🔽 | vevő neve  🔽  | vevőtípus  🔽  | régió 🗾 |
|---|-------------|---------------|---------------|---------|
| 1 | 1           | Roboz Zoltán  | magán         | KM      |
| 2 | 2           | Szirtes Edvin | vendéglős     | KM      |
| 3 | 3           | Rédei Matild  | kiskereskedő  | КМ      |
| 4 | 4           | Szőnyi Lujza  | kiskereskedő  | КМ      |
| 5 | 5           | Gál Szilárd   | nagykereskodő | KM      |

199. ábra a példa táblája

Az egyéni összesítés képletében a CALCULATE függvény szűrő-argumentumaival ki kell választanunk a Nyugat-, a Közép- és a Dél-Dunántúl régiók kis- és nagykereskedőit, majd a függvény kifejezésargumentumával meg kell számláltatni a kiválasztott rekordok "vevő AZ" mezőbejegyzéseit.



200. ábra a dunántúli kereskedőket elemző egyéni összesítés képlete

A CALCULATE függvény tulajdonságainak felsorolásakor harmadikként említett táblanevekkel a számításkor figyelembe veendő kapcsolatokat deklaráltuk. Ha a számításban érintett táblák között több kapcsolat is létezik, akkor az USERELATIONSHIP függvénnyel tudjuk az inaktív kapcsolatot a képlet kiértékelésének idejére aktiválni. A függvény argumentumai a kapcsoló mezők.

A függvény működését egy kéttáblás adatbázison mutatom be. Az "eladások" és a "naptár" táblák között két kapcsolatot hoztam létre.



201. ábra a példa táblái kapcsolatnézetben

Az adatbázis aktív kapcsolata az 'naptár'[dátum] - 'eladások'[megrendelés], inaktív kapcsolata pedig a 'naptár'[dátum] - 'eladások'[kiegyenlítve].

|             |                | eladás AZ | megrendelés | szállítás  | kiegyenlítve | darab |
|-------------|----------------|-----------|-------------|------------|--------------|-------|
|             |                | 1         | 2015.01.04  | 2015.01.07 | 2015.01.14   | 110   |
| hónap név 💌 | Osszeg - darab | dbk       | 2015.01.15  | 2015.01.22 | 2015.01.29   | 60    |
| január      | 675            | 455       | 2015.01.18  | 2015.01.23 | 2015.01.27   | 285   |
| február     | 545            | 220       | 2015.01.27  | 2015.02.06 | 2015.02.14   | 220   |
| március     | 1010           | 990       | 2015.02.22  | 2015.03.07 | 2015.03.14   | 240   |
| április     | 380            | 565       | 2015.02.26  | 2015.03.02 | 2015.03.13   | 305   |
| május       | 630            | 1010      | 2015.03.04  | 2015.03.13 | 2015.03.22   | 210   |
| június      | 290            | 290       | 2015.03.13  | 2015.03.17 | 2015.03.28   | 235   |
| Végösszeg   | 3530           | 3530      | 2015.03.18  | 2015.03.31 | 2015.04.09   | 305   |
|             |                | 10        | 2015.03.21  | 2015.03.25 | 2015.04.02   | 205   |
|             |                | 11        | 2015-02-25  | 2015-04.02 | 2015.04.17   | 55    |

202. ábra a tábla forrása a kimutatással

A kimutatás az eladások darabszámát mutatja havi bontásban. Az automatikus összesítés az aktív kapcsolat "megrendelés" mezője alapján történik, míg a "dbk" az inaktív kapcsolat "kiegyenlítve" mező bejegyzései alapján csoportosít. Az egyéni összesítés képlete: =CALCULATE( SUM( [darab] ) ; USERELATIONSHIP( 'eladások'[kiegyenlítve] ; 'naptár'[dátum] )). Tehát a USERELATIONSHIP függvény az 'eladások'[kiegyenlítve] - 'naptár'[dátum] kapcsolat használatát írja elő a CALCULATE függvény számára.

A CALCULATE függvénynek van egy, eddig még nem említett tulajdonsága: a szűrőargumentumában szereplő mezők szűrhetőségüket és csoportosító szerepüket is elvesztik a kimutatásban. Lássunk erre a tulajdonságra is egy egyszerű példát!



203. ábra a "karakterek" tábla forrása és a tábla elemzésére létrehozott kimutatások

A felső kimutatás "CAL" egyéni összesítése a "B" és az "D" betűs rekordok "szám" mezőjének bejegyzéseit adja össze. A bővítmény betűk szerint nem bontja a megállapított statisztikai értéket csak a "római" mező tételei szerint. A "betűk" mező a kimutatásban szűrhető marad, de látható tételeinek statisztikai értékét ez a művelet nem befolyásolja.

A szokásos megjelenítést és működést a KEEPFILTERS függvénnyel állíthatjuk elő. Ezt a megoldást látjuk az alsó kimutatás "CKEEP" képletében. A KEEPFILTERS függvény argumentuma a CAL-CULATE függvény egy vagy több szűrő-argumentuma. A függvény "helyreállítja" az argumentumaiban szereplő mezők szűrhetőségét is, a szűrt rekordok halmazában. Tehát a példánál maradva, szűréssel választhatunk a "B" vagy "D" rekordok között.

Az ALLEXCEPT függvénnyel azokat a mezőket deklarálhatjuk, amelyek szűrőit a képlet kiértékelésekor figyelembe kell venni. A CALCULATE függvény szűrő-argumentumában azonban a függvény szűrést generál: az argumentumaival meghatározott mezők, a mezők aktuális értékeikkel lesznek szűrve. Lássunk egy egyszerű példát!

| J. | AZ 🔽 | betűk 🔽 | logikai 💌 | ALLE 💌 |
|----|------|---------|-----------|--------|
| 1  | 01   | С       | IGAZ      | 2      |
| 2  | 02   | В       | HAMIS     | 3      |
| 3  | 03   | В       | HAMIS     | 3      |
| 4  | 04   | В       | HAMIS     | 3      |
| 5  | 05   | C       | IGAZ      | 2      |
| 6  | 06   | Α       | HAMIS     | 2      |
| 7  | 07   | C       | HAMIS     | 1      |
| 8  | 08   | В       | IGAZ      | 1      |
| 9  | 09   | Α       | HAMIS     | 2      |

| 1 | AZ 🔽 | betűk 🖃 | logikai 💽 | ALLE 🔽 |
|---|------|---------|-----------|--------|
| 1 | 06   | Α       | HAMIS     | 2      |
| 2 | 09   | Α       | HAMIS     | 2      |
| 3 | 02   | В       | HAMIS     | 3      |
| 4 | 03   | В       | HAMIS     | 3      |
| 5 | 04   | В       | HAMIS     | 3      |
| 6 | 08   | В       | IGAZ      | 1      |
| 7 | 01   | С       | IGAZ      | 2      |
| 8 | 05   | С       | IGAZ      | 2      |
| 9 | 07   | С       | HAMIS     | 1      |

ALLE =CALCULATE( COUNTA( [AZ] ) ; ALLEXCEPT( A ; A[betűk] ; A[logikai] ))

204. ábra

a példa kilenc rekordos táblája (A) rendezetlenül és a "betűk" mező bejegyzései alapján rendezetten

A rendezett táblában jól megfigyelhető az ALLEXCEPT függvény hatása az ALLE számított mező képletében: hány olyan rekord található a táblában, amelynek betűje és logikai értéke azonos az aktuális rekord betűjével és logikai értékével. Ha például a "o2" kulcsú rekord "betűk" és "logikai" mezőjében álló bejegyzések alapján szűrnénk a táblát, akkor három rekordot kapnánk.

A számított mező képletében álló ALLEXCEPT( A ; A[betűk] ; A[logikai] ) képletrész egyenértékű két, egymásba ágyazott, FILTER függvénnyel: FILTER( FILTER( A ; [betűk] = EARLIER( [betűk] )) ; [logikai] = EARLIER( [logikai] )).

A CROSSFILTER függvény szűrő-kezelés eszköze több a többhöz viszonyban álló táblák egyéni összesítéseiben. Csak beágyazottan alkalmazható, ezért itt, és nem a funkciója szerinti fejezetben mutatom be. Első két argumentuma az adatbázis egy kapcsolatának kapcsoló mezői, több oldali kapcsoló mező és egy oldali kapcsoló mező sorrendben. Harmadik argumentumával, a bővítmény szóhasználatával, a "kereszt-szűrés irányát" határozhatjuk meg. Lehetséges értékei a következők. Both: a megadott kapcsolat mindkét táblájában beállított szűrők befolyásolják a képlet eredményét. OneWay: csak a kapcsolat egy oldalán álló tábla szűrői lesznek figyelembe véve a képlet kiértékelésekor. None: egyik tábla szűrője se befolyásolja a képlet eredményét.

Lássunk egy egyszerű modellt a függvény bemutatására: színházak adatbázis, négy táblával.



205. ábra a CROSSFILTER függvény működését bemutató modell

Ahogy azt a képen látjuk, a "színészek" és a "színdarabok" táblák több a többhöz viszonyban állnak egymással. Kapcsolótáblájuk a "szerepek" tábla. Az "előadások" tábla egy hónap előadásait rögzíti. A kép közepén álló kimutatással statisztikát készítettem az egyes színészek foglalkoztatásáról. A pivot-táblához két külső szűrő tartozik, az egyik a "szerepek" tábla "énekes" mezőjének, a másik a "színdarabok" tábla "cím" mezőjének tételeivel. A kimutatást a kép szűretlen állapotban mutatja.

A "hányat játszik" egyéni összesít képlete, az eddigi ismereteink szerint: CALCULATE( COUNTA( 'előadások'[előadások AZ]); szerepek). A képlet kiértékelésekor a bővítmény mindkét szűrő állapotát figyelembe veszi.

A kimutatásban közvetlenül két táblát szerepeltettünk: a "színészek" táblát, amelynek mezője a sorterületen áll és az "előadások" táblát, amelynek egyik mezőjét elemezzük. A CROSSFILTER függvénnyel csak a másik két tábla szűrőinek hatását szabályozhatjuk: CALCULATE( COUNTA( 'előadások'[előadások AZ]); CROSSFILTER( szerepek[színdarab AZ]; 'színdarabok'[színdarab AZ]; Both )).



206. ábra a CROSSFILTER függvény alkalmazásának sémája

A módosított és az eredeti képlet azonos statisztikai értéket eredményez. Mindkét szűrő hatása érvényesül. A függvény harmadik argumentumának OneWay értéke csak a "színdarabok" tábla, None értékénél egyik tábla szűrői sem lesznek figyelve.

A CALCULATE függvény első argumentumában csak egyetlen adatot eredményező kifejezés állhat. Ha táblát adó kifejezést szeretnénk definiálni szűrt vagy többtáblás környezetben, akkor a CAL-CULATETABLE függvényt kell használnunk. A függvény argumentumlistája azonos a CALCULATE függvény argumentumlistájával. Az alábbi képen a CALCULATETABLE függvény alkalmazására látunk egy példát.

|   | vásárlás AZ 💌 | vevő AZ 🛛 🔽 | dátum 🔽       | fajta 🗾      | évjárat 🗾 | karton 🗾 | nettó ár 🛛 🔽 |
|---|---------------|-------------|---------------|--------------|-----------|----------|--------------|
| 1 | 001           | 383         | 2016. 01. 03. | Chardonnay   | 2010      | 1        | 1 500 Ft     |
| 2 | 002           | 351         | 2016. 01. 03. | Királylányka | 2010      | 1        | 2 940 Ft     |
| 3 | 003           | 075         | 2016. 01. 03. | Királylányka | 2008      | 1        | 2 940 Ft     |
| 4 | 004           | 065         | 2016. 01. 03. | Olaszrizling | 2012      | 2        | 3 240 Ft     |
| 5 | 005           | 067         | 2016-01.05.   | Szürkebarát  | 2009      | 1        | 3 000 Ft     |

=COUNTROWS( CALCULATETABLE( DISTINCT( 'vásárlások'[vevő AZ] ) ; MONTH( 'vásárlások'[dátum] ) = 5 ))

207. ábra

a CALCULATETABLE függvény a "vásárlások" tábla májusi vevőit elemző egyéni összesítés képletében

A bemutatott három szűrőfüggvény közül tehát a CALCULATE egyetlen adatot ad eredményül, a CALCULATETABLE egymezős táblát, míg a FILTER táblát eredményez. A két CALCULATE függvény szűrőfunkciója az első argumentumukkal deklarált kifejezés hatókörének, konkrétan a feldolgozandó adatok halmazának meghatározására szolgál, míg a FILTER függvény egy származtatott vagy egy létező tábla rekordjainak szelektálására használható. A FILTER függvény utóbbi funkciója azonban már átvezet bennünket a kereső függvények csoportjába.

## kereső függvények

A DAX kereső függvényei az argumentumaikkal meghatározott mezőbejegyzést illetve mezőbejegyzéseket adják eredményül. A LOOKUPVALUE függvény az első argumentumával megadott mező bejegyzését adja eredményül, abból a rekordból, amelyet további mezőnév-bejegyzés argumentum-párosai határoznak meg. Ez egyértelmű megfogalmazás, de mi lesz a függvény eredménye, [1] ha nincs a feltételeknek megfelelő rekord, [2] ha több ilyen rekord is található, azonos eredmény-mező bejegyzéssel és [3] ha több ilyen rekord is létezik, különböző eredmény-mező bejegyzéssel? Próbáljuk ki!

| 1 | AZ                                                                           |        | betűk 🗾    | számok 💽       | logikai 💽 | római 🔽 |  |  |  |  |  |
|---|------------------------------------------------------------------------------|--------|------------|----------------|-----------|---------|--|--|--|--|--|
| 1 |                                                                              | 1      | С          | 2              | HAMIS     | Ш.      |  |  |  |  |  |
| 2 |                                                                              | 2      | A          | 5              | IGAZ      | П.      |  |  |  |  |  |
| 3 |                                                                              | 3      | E          | 1              | IGAZ      | П.      |  |  |  |  |  |
| 4 |                                                                              | 4      | A          | 3              | IGAZ      | П.      |  |  |  |  |  |
| 5 |                                                                              | 5      | E          | 1              | HAMIS     | Ш.      |  |  |  |  |  |
|   |                                                                              |        |            |                |           |         |  |  |  |  |  |
|   | LOOK1:                                                                       | (üres) | LOOK2: II. | LOOK3: #HIBA 4 |           |         |  |  |  |  |  |
|   |                                                                              | ~      |            |                |           |         |  |  |  |  |  |
| l | LOOK1 =LOOKUPVALUE( [római] · adatok[betűk] · "C" · adatok[számok] · 6 )     |        |            |                |           |         |  |  |  |  |  |
| L | LOOK2 =LOOKUPVALUE( [római] ; adatok[betűk] ; "A" ; adatok[logikai] ; TRUE ) |        |            |                |           |         |  |  |  |  |  |
| L | LOOK3 =LOOKUPVALUE( [római] ; adatok[betűk] ; "E" ; adatok[számok] ; 1 )     |        |            |                |           |         |  |  |  |  |  |

208. ábra a LOOKUPVALUE függvény eredménye speciális esetekben

A tábla három egyéni összesítése válaszol a feltett kérdéseinkre. Hatos számot tartalmazó "C" betűs rekord nincs a táblában, ezért a "LOOK1" üres bejegyzést eredményezett. Van-e a táblában "A" betűs, IGAZ bejegyzésű rekord és ha van, mi a bejegyzése a "római" mezőben? – kérdeztem a "LOOK2" egyéni összesítéssel. A válasz, azaz a függvény eredménye egy római kettes. Tehát van ilyen rekord, nem tudjuk hány darab, de az biztos, hogy a "római" mezőben mindegyiknek kettes a bejegyzése. A "LOOK3" egyéni összesítéssel az egyes számot tartalmazó, "E" betűs rekordok "római" mezőjében álló bejegyzésére voltam kíváncsi. A függvény talált ilyen rekordokat, de mivel az eredmény-mezőben különböző bejegyzések álltak, hibát jelzett. Az üzenet szövege azonban értelmetlen: "Több értéket tartalmazó tábla van megadva a várt egyetlen érték helyett". Helyesen: A képlet kiértékelése több adatot eredményezett egyetlen érték helyett. A LOOKUPVALUE nem szűrőfüggvény, tehát csak konstanst fogad el a mezőnév-bejegyzés párosok második argumentumaként, relációs jelet nem használhatunk!

A leggyakoribb alkalmazásuk miatt, a bővítmény a FIRSTNONBLANK és a LASTNONBLANK függvényeket az időszak-kezelő függvények csoportjába sorolja, de funkciójuk a kereső függvényekkel rokon: az első argumentumukkal deklarált mező, a vizsgált csoportban található, első/utolsó bejegyzését adják eredményül, ahol a második argumentumukban álló kifejezés kiértékelése nem üres eredményre vezet. A függvények leírása adattípus-korlátozást nem tartalmaz!

A két függvény működését a LASTNONBLANK függvénnyel mutatom be. Adott két tábla: "raktár" és "naptár". A kapcsoló mezők a táblák "dátum" mezői. Készítenem kell egy kimutatást, amely a hónapok naptári utolsó napjára vonatkozó készletet tartalmazza.

| termé | k                         | Ŧ  | dátu | um         | Ŧ       | készlet   | -     |          | zár          |         |            |         | termék    | Ŧ          |            |
|-------|---------------------------|----|------|------------|---------|-----------|-------|----------|--------------|---------|------------|---------|-----------|------------|------------|
| Α     |                           |    | 201  | 15.05      | .05     |           | 31    |          | év           | Ŧ       | hónap      | Ŧ       | Α         |            | В          |
| В     |                           |    | 201  | 15.05      | .06     |           | 37    |          | <b>2015</b>  |         | május      |         | 33        |            |            |
| В     |                           |    | 201  | 15.05      | .10     |           | 79    |          |              |         | július     |         |           |            | 63         |
| Α     |                           |    | 201  | 15.05      | .25     |           | 89    |          |              |         |            |         |           |            |            |
| Α     |                           |    | 201  | 15.05      | .31     |           | 33    |          | LNB          |         |            |         | termék    | -          |            |
| В     |                           |    | 201  | 15.06      | .05     |           | 96    |          | év           | Ŧ       | hónap      | Ŧ       | Α         |            | В          |
| A     |                           |    | 201  | 15.06      | .08     |           | 30    |          | <b>2015</b>  |         | május      |         | 2015.05   | .31        | 2015.05.10 |
| В     |                           |    | 201  | 15.06      | .15     |           | 56    |          |              |         | június     |         | 2015.06   | .08        | 2015.06.21 |
| В     | <b>k</b>                  |    | 201  | 15.06      | i.18 39 |           |       |          |              | július  |            | 2015.07 | .23       | 2015.07.31 |            |
| В     |                           |    | 201  | 15.06      | .21     |           | 21    |          |              |         |            |         |           |            |            |
| Α     |                           |    | 201  | 15.07      | .03     |           | 28    |          | zárok        |         |            |         | termék    | Ŧ          |            |
| В     |                           |    | 201  | 15.07      | .06     |           | 93    |          | év           | -       | hónap      | -       | Α         |            | В          |
| Α     |                           |    | 201  | 15.07      | .15     |           | 95    |          | <b>2015</b>  |         | május      |         | 33        |            | 79         |
| Α     |                           |    | 201  | 15.07      | .23     |           | 79    |          |              |         | június     |         | 30        |            | 21         |
| В     |                           |    | 201  | 15.07      | .31     |           | 63    |          |              |         | július     |         | 79        |            | 63         |
|       |                           |    |      |            |         |           |       |          |              |         |            |         |           |            |            |
|       | Z                         | ár |      | =CA        | LCU     | JLATE( SU | JM(   | [ké:     | szlet] ) ; L | AST     | TDATE( 'na | apt     | ár'[dátur | n] ))      |            |
|       | LNB =LASTNONBLANK( 'napta |    |      | tár'[dátur | n] ;    | CALCULA   | TE(   | SUM( [ké | szl          | et] ))) |            |         |           |            |            |
|       | zárok                     |    |      |            | OK      | UPVALUE   | ( [ké | İszl     | et] ; [dátı  | nw]     | ; [LNB] )  |         |           |            |            |

209. ábra a "raktár" tábla forrása és az elemzésére létrehozott kimutatások

Először a már ismertetett LASTDATE függvénnyel próbálkoztam a "zár" egyéni összesítésben, de ez nem vezetett eredményre, mert a kimutatás csak azokat a készlet-bejegyzéseket mutatja, amelyek a hónap utolsó napján lettek rögzítve.

A második kimutatás "LNB"-ben kipróbáltam, hogyan működik a LASTNONBLANK. A függvény első argumentuma tehát az eredmény-mező neve, második argumentuma pedig egy kifejezés, amelynek kiértékelése után a bővítmény megkeresi az adott dátumegységen belül azt az utolsó rekordot, ahol a kifejezés kiértékelése nem üres bejegyzés, majd ennek a rekordnak a függvény első argumentumával meghatározott mezőjében álló bejegyzést kapjuk eredményül.

A harmadik kimutatásban a "zárok" szolgáltatja a hónap utolsó napján érvényes készletet. Mindhárom egyéni összesítés a "raktár" táblában tárolódik.

A RELATED és a RELATEDTABLE kereső függvényeket már ismerjük. Foglaljuk össze használatukat a különböző táblákban álló, de logikailag kapcsolódó adatokkal végzett számításokban. Csak egy a többhöz kapcsolatban álló táblákat használunk. A több a többhöz kapcsolatban álló táblák összetartozó adatainak lekérdezését már megismertük.



210. ábra

összetartozó adatok lekérdezése számított mezők képletében, egy a többhöz kapcsolatban álló táblákban

Az adott régióba tartozó megyék számát meghatározó M SZÁMA és az adott régióhoz tartozó városok számát adó V SZÁMA1 számított mezők képletének szerkezete azonos. A bővítmény a CAL-CULATE függvény segítségével keresi ki a másik táblában álló kapcsolódó adatokat. Nem okoz az sem problémát, ha a keresett adatokat tartalmazó tábla nem közvetlenül kapcsolódik a számított mezőt tartalmazó táblához.

A szintén az adott régió városainak számát adó V SZÁMA2 és V SZÁMA3 számított mezők a CAL-CULATETABLE illetve a RELATEDTABLE függvényekkel kérdezik le a kapcsolódó bejegyzéseket, majd az így létrejött egymezős virtuális tábla rekordjait a COUNTROWS függvénnyel számlálják meg.

A "városok" tábla két számított mezője, az M ARÁNY és az R ARÁNY, az adott város népességének és a város megyéje illetve régiója népességének arányát számítja ki.

A képleteket vizsgálva ne felejtsük el: a kapcsolat egy oldalán álló tábla tetszőleges rekordjához egy vagy több rekord tartozhat, míg a több oldali tábla tetszőleges rekordjához csak egy! Másként fogalmazva a kapcsolódó adatok lekérdezésének módját a képletet tartalmazó tábla kapcsolati pozíciója határozza meg.

A következő "kereső" függvény az EARLIER. Funkcióját már ismerjük, most elegendő ha csak zanzásítva rögzítjük: ciklust generál a feldolgozás alatt álló rekord meghatározott bejegyzésével. Emlékeztetőül és gyakorlásképen nézzünk egy egyszerű példát. A "gyártás" tábla egy vállalat telephelyeinek napi termelését rögzíti. Hozzunk létre egy számított mezőt, amelyben megállapítjuk a darabszám és az adott telephely legnagyobb darabszámának arányát!

| 1 | gyártás AZ  🖬 | telephely 🔽 | dátum 🔽       | darab 🔽 | ARÁNY 1 🛛 🔽 | ARÁNY 2 🛛 🔽 |
|---|---------------|-------------|---------------|---------|-------------|-------------|
| 1 | 01            | С           | 2017. 01. 03. | 40      | 57,1%       | 57,1%       |
| 2 | 02            | С           | 2017. 01. 13. | 50      | 71,4%       | 71,4%       |
| 3 | 03            | В           | 2017. 01. 27. | 10      | 12,5%       | 12,5%       |
| 4 | 04            | С           | 2017. 02. 02. | 30      | 42,9%       | 42,9%       |
| 5 | 05            | Α           | 2017_02. 18.  | 30      | 30,0%       | 30,0%       |

 ARÁNY 1
 =[darab] / CALCULATE( MAX( [darab] ); FILTER( 'gyártás'; [telephely] = EARLIER( [telephely] )))

 ARÁNY 2
 =[darab] / MAXX( FILTER( 'gyártás'; [telephely] = EARLIER( [telephely] )); [darab] )

|             | 211. á    | bra      |           |
|-------------|-----------|----------|-----------|
| a "gyártás" | tábla két | számítot | t mezővel |

A legmagasabb értéket megkereshetjük közvetett módon a MAX függvénnyel a CALCULATE függvénybe ágyazottan, illetve közvetlenül a MAXX függvénnyel. A program MAX függvényétől eltérően a DAX MAX függvényének csak egyetlen argumentumot adhatunk meg: a vizsgálandó mező nevét. A második számított mező, ARÁNY 2 képletében álló MAXX függvénynek nincs az Excelben megfelelője: az első argumentumával meghatározott táblában, minden rekordban kiértékeli a második argumentumában álló kifejezést, és az eredmények közül a legnagyobbat választja ki.

Végül az EARLIEST függvényről kellene írnom, de nem tudok. A függvény leírása rendkívül szűkszavú és mintapéldát se publikált a Microsoft. Belső ciklust az EARLIER függvények egymásba ágyazásával nem tudunk létrehozni. Valószínűleg ezt a funkciót látja el az EARLIEST, csak az a kérdés: hogyan. Ha valaki tudja, ossza meg velünk a metódust!

#### statisztikai függvények

A DAX statisztikai függvényeinek többsége numerikus adatok elemzésére szolgál. Egy numerikus adattípusú mező bejegyzéseinek összegét, szorzatát, számtani és mértani közepét, darabszámát, minimumát, maximumát, szórását, varianciáját, mediánját és percentilisét statisztikai függvényekkel képezhetjük. A függvények egyetlen argumentuma az elemzett mező neve.

A felsorolt statisztikai vizsgálatokat elvégezhetjük egy tábla minden rekordjában kiértékelt kifejezés eredményhalmazán is. Ezek az "X"-es függvények már két-argumentumosak. Első argumentumukkal a táblát, második argumentumukkal a kifejezést kell deklarálnunk.

| statisztikai érték        | mezőbejegyzések elemzése       | eredményhalmaz elemzése          |
|---------------------------|--------------------------------|----------------------------------|
| összeg                    | SUM                            | SUMX                             |
| szorzat                   | PRODUCT                        | PRODUCTX                         |
| számtani és mértani közép | AVERAGE, GEOMEAN               | AVERAGEX, GEOMEANX               |
| darabszám                 | COUNT                          | COUNTX                           |
| minimum, maximum          | MIN, MAX                       | MINX, MAXX                       |
| szórás                    | STDEV.P, STDEV.S               | STDEVX.P, STDEVX.S               |
| variancia                 | VAR.P, VAR.S                   | VARX.P, VARX.S                   |
| medián                    | MEDIAN                         | MEDIANX                          |
| percentilis               | PERCENTILE.EXC, PERCENTILE.INC | PERCENTILEX.EXC, PERCENTILEX.INC |

212. ábra

numerikus adatok elemzésére szolgáló statisztikai függvények

A felsorolt függvények működése, beleértve az üres bejegyzések kezelését is, megegyezik a program azonos funkciójú függvényeinek működésével: SUM (SZUM), PRODUCT (SZORZAT), AVERAGE (ÁTLAG), GEOMEAN (MÉRTANI.KÖZÉP), COUNT (DARAB), MAX, MIN, STDEV.P (SZÓR.S), STDEV.S (SZÓR.M), VAR.P (VAR.S), VAR.S (VAR.M), MEDIAN (MEDIÁN), PERCENTILE.EXC (PERCENTILIS.KI-ZÁR) és PERCENTILE.INC (PERCENTILIS.TARTALMAZ).

A statisztikában jártas felhasználók választhatnak a szórás és a variancia függvények "P" (population) és "S" (sample), valamint a percentilis függvények végpontokat kizáró "EXC" illetve a végpontokat is figyelembe vevő "INC" változatai között. Dátumok átlagának képzésekor előfordulhat, hogy a kapott számot nem tudjuk dátumként megjeleníteni, ekkor a képletben kell a megjelenítést szabályoznunk: FORMAT( ROUND( AVERAGE( [dátum] ); o ); "General Date" ).

A logikai adattípusú mezők statisztikai elemzéséhez az AVERAGE, a COUNT, a MAX és a MIN függvények "A" betűs változatait használhatjuk: AVERAGEA, a COUNTA, a MAXA és a MINA. A számításkor az IGAZ érték egy, a HAMIS értéke nulla. A COUNTA függvényt szöveg adattípusú mezők bejegyzéseinek megszámlálására is használhatjuk.

Megszámlálást végez a COUNTBLANK és a COUNTROWS függvény is. Előbbi egy tetszőleges adattípusú mező üres bejegyzéseit, utóbbi egy valós vagy virtuális tábla rekordjait számlálja meg. Az elemzendő objektumot a függvények egyetlen argumentumával deklaráljuk.

Numerikus adatok elemzésekor gyakori művelet egy szám az őt tartalmazó halmaz számai rangsorában elfoglalt pozíciójának meghatározása. Például, Balogh János előző évi árbevétele, hányadik a vállalat többi üzletkötőjének árbevételeihez viszonyítva. Második, ha csak egyetlen árbevétel nagyobb az övénél. A rangsor-pozíció tehát egy sorszám. A szokásos eljárásban a legnagyobb szám kapja az egyest, és az egyre kisebb számok egyre nagyobb sorszámúak, de dönthetünk úgy is, hogy a legkisebb számé lesz az egyes, és a számok növekedésével a sorszámuk is növekszik.

A DAX három rangsor-kezelő függvénnyel rendelkezik: RANK.EQ, a RANKX és a TOPN. Egy szám az őt tartalmazó számok rangsorában elfoglalt pozíciójának sorszámát a RANK.EQ függvénnyel tudjuk megállapítani. A függvény első argumentuma a vizsgált szám, a második az őt tartalmazó halmaz megadására szolgál. A két argumentum az esetek többségében azonos, a rangsorolásra kerülő számokat tartalmazó mező neve.

| működés                               | egyes sorszámú elem | argumentum               |
|---------------------------------------|---------------------|--------------------------|
| sorszámozás a rangsor szerint         | legnagyobb          | nincs megadva / o / DESC |
| sorszámozás a rangsorral ellentétesen | legkisebb           | 1/ASC                    |

213. ábra

a RANK.EQ függvény harmadik, a sorszámozás irányát meghatározó, argumentuma

A függvény leírása szerint az első argumentum kifejezés is lehet, sőt a második argumentumban hivatkozhatunk származtatott mezőre is. Utóbbi lehetőség nem vonatkozik a ADDCOLUMNS, a ROW és a SUMMARIZE függvényekkel létrehozott mezőkre.

Az elemzett halmazban álló azonos számok rangsor-pozíciója is azonos. Az őket követő szám rangsor-pozíciója az ismétlődő sorszám darabszáma és a többször előforduló rangsor-pozíció öszszege lesz. Például három kilences sorszám után a tizenkettes következik: 3 + 9. Az azonos rangsorpozíciók kezelésének ezt a módját SKIP módszernek nevezzük.

|      | 1         | AZ 🔽                             | szám         |    | RSOR 💽 | FORD |
|------|-----------|----------------------------------|--------------|----|--------|------|
|      | 1         | 01                               |              | 40 | 8      | 1    |
| BEOB |           | 02                               | -11          | 80 | 2      | 5    |
| FORD | =RANK.EQ( | (szám) ; (szár<br>(szám) : (szár | nj)<br>nl:1) | 90 | 1      | 8    |
|      | 4         | 04                               |              | 80 | 2      | 5    |
|      | 5         | 05                               |              | 60 | 6      | 3    |
|      | 6         | 06                               |              | 70 | 5      | 4    |
|      | 7         | 07                               |              | 50 | 7      | 2    |
|      | 8         | 08                               |              | 80 | 2      | 5    |

214. ábra a RANK.EQ függvény működésének bemutatása két számított mezővel

A RANKX függvény, a többi X-es függvényhez hasonlóan, egy kifejezést értékel ki egy tábla minden rekordjában, majd az így nyert számhalmaz rangsorában megállapítja egy szám pozícióját. A függvény öt argumentuma, sorrendben a következő.

[1] A táblát vagy a táblát adó kifejezés. [2] A minden rekordban kiértékelendő kifejezés. [3] A szám, amelynek rangsor pozícióját kell megállapítani a második argumentum kiértékelése során kapott eredményhalmazban. [4] A sorszámozás irányát meghatározó argumentum. Szintaktikája azonos a RANK.EQ függvény azonos funkciójú argumentumával. [5] A sorszámozás módját előíró argumentum.

| működés                      | azonos számok sorszámai                       | argumentum           |
|------------------------------|-----------------------------------------------|----------------------|
| szakadozott sorszám-kiosztás | 1, 2, 3, 4, 5, 5, 5, 8, 9, 10, 11, 11, 11, 14 | nincs megadva / Skip |
| folytonos sorszám-kiosztás   | 1, 2, 3, 4, 5, 5, 5, 6, 7, 8, 9, 9, 9, 10     | Dense                |

215. ábra

a RANKX függvény ötödik, a sorszámozás módját meghatározó, argumentuma

Ahogy a képen megfigyelhetjük a DENSE módszert alkalmazva az ismétlődő sorszámot követő elem az ismétlődő sorszámot követő sorszámot kapja.

A RANKX függvénynek csak az első két argumentuma kötelező. A harmadik argumentum, amely kifejezés is lehet, hiánya a leggyakoribb vizsgálat végrehajtását írja elő: a számított érték pozícióját keresd a számított értékek rangsorában! Ha a nem kötelező argumentumok közül az argumentumlista közbenső elemét hagyjuk el, ezt üres argumentummal kell jeleznünk. Például nem adjuk meg a harmadik és negyedik elemet: RANKX( <tábla> ; <kifejezés> ; ; ; DENSE ).

| 4 | munkatárs 🔽 | kezdés 🔽      | zárás 💽       | darab 🔽 | RSOR 🗾 | RSOR D |
|---|-------------|---------------|---------------|---------|--------|--------|
| 1 | Kun Balázs  | 2017. 03. 13. | 2017. 03. 16. | 12      | 1      | 1      |
| 2 | Kő Alfréd   | 2017. 03. 15. | 2017. 03. 17. | 12      | 3      | 3      |
| 3 | Tar Mátyás  | 2017. 03. 11. | 2017. 03. 13. | 10      | 2      | 2      |
| 4 | Pap Elemér  | 2017. 03. 12. | 2017. 03. 16. | 24      | 3      | 3      |
| 5 | Nagy Zoltán | 2017. 03. 10. | 2017. 03. 14. | 32      | 7      | 5      |
| 6 | Kis Kálmán  | 2017. 03. 14. | 2017. 03. 17. | 18      | 3      | 3      |
| 7 | Tóth Bálint | 2017. 03. 12. | 2017. 03. 14. | 14      | 6      | 4      |

216. ábra a minőség-ellenőrzés adatait tartalmazó "selejt" tábla

A képen látható tábla két számított mezője a napi selejt értéke alapján rangsorolja a munkatársakat. Az RSOR szakadozott sorszámot (SKIP) ad: RANKX( selejt ; [darab] / ( [zárás] - [kezdés] ) ; ; 1 ), míg az RSOR D folyamatos sorszámozást (DENSE) végez: RANKX( selejt ; [darab] / ( [zárás] - [kezdés] ) ; ; 1 ; DENSE ).

A kimutatás tételeink rangsorát is a RANKX függvénnyel állapíthatjuk meg. Vegyünk egy egyszerű adatbázist a "termékek" és a "eladások" táblákkal!

|   |               |     |    | eladás A | XZ 🔽 | termék AZ 🕴 | ₽ 🔽 | darab | 1 |                |         |
|---|---------------|-----|----|----------|------|-------------|-----|-------|---|----------------|---------|
|   | termák A7 🖳 🗖 | náv |    |          |      | 04          |     |       |   | 5              |         |
| 1 |               | A   |    |          |      | 03          |     |       |   | 3              |         |
| - | 01            | ~   |    |          |      | 02          |     |       |   | 7              |         |
| 2 | 02            | в   |    |          |      | 03          |     |       |   | 7              |         |
| 3 | 03            | с   |    |          |      | 02          |     |       |   | -              |         |
| 4 | 04            | D   |    |          |      | 01          | ne  | v     | - | Osszeg - darab | rangsor |
| 5 | 05            | E   |    |          |      | 01          | - 1 | 4     |   | 16             | 3       |
|   |               |     | 1  |          | U    | 02          |     | 5     |   | 23             | 1       |
|   |               |     | 8  | 08       |      | 04          |     | 5     |   | 10             | 4       |
|   |               |     |    | 00       |      |             | - I | D     |   | 17             | 2       |
|   |               |     | 9  | 09       |      | 04          |     |       |   | 9              | 5       |
|   |               |     | 10 | 10       |      | 05          |     |       |   | 6              |         |
|   |               |     | 11 | 11       |      | 02          |     |       | _ | 5              |         |

217. ábra a példa két táblája és az elemzésükre létrehozott kimutatás

Először egy automatikus összesítéssel megállapítottam a számok összegét betűk szerinti bontásban, majd a "rangsor" egyéni összesítéssel megállapítottam a betűk rangsorát az összesített számok alapján. rangsor:= RANKX( ALL( 'termékek'[név]); 'eladások'[Összeg - darab]).

Mindhárom rangsor-kezelő függvénynek, tehát a később tárgyalandó TOPN-nek is, van egy közös tulajdonsága: képesek szöveg-halmazok elemeit is rangsorolni. Ez az alapja a karakterláncok ABC szerinti rendezésének. Növekvő rendezés esetén az egyes sorszámot a rendezett halmaz utolsó eleme kapja, tehát az ABC végén álló betűkkel kezdődő karakterláncok.

A következő képen látható "termények" tábla "RSOR 1" számított mezője rangsorolja a "termény" mező bejegyzéseit a RANK.EQ függvénnyel. Az "RSOR 2" számított mező a "termény" mező bejegyzéseinek második karaktere alapján állapítja meg a szövegek rangsorár a RANKX függvény segítségével.

| 1 | termény A                                                           | Z 🔽 | termény 🔽 | RSOR 1 💽 | RSOR 2 |  |  |  |  |  |
|---|---------------------------------------------------------------------|-----|-----------|----------|--------|--|--|--|--|--|
| 1 | 01                                                                  |     | lencse    | 1        | 2      |  |  |  |  |  |
| 2 | 02                                                                  |     | bab       | 4        | 3      |  |  |  |  |  |
| 3 | 03                                                                  |     | lencse    | 1        | 2      |  |  |  |  |  |
| 4 | 04                                                                  |     | borsó 3   |          | 1      |  |  |  |  |  |
| _ |                                                                     |     |           |          | 1      |  |  |  |  |  |
|   | RSOR 1 =RANK.EQ([termény];[termény])                                |     |           |          |        |  |  |  |  |  |
|   | RSOR 2 =RANKX( 'termények' ; MID( [termény] ; 2 ; 1 ) ; ; ; Dense ) |     |           |          |        |  |  |  |  |  |

218. ábra szövegek rangsorának kezelése a RANK.EQ és a RANKX függvényekkel

A DAX MID függvényének funkciója és szintaktikája azonos a program KÖZÉP függvényével.

A mindennapi életben a rangsor és a hierarchia összetartozó fogalmak. Bemutatok egy típusfeladatot, amelynek algoritmusában összemosódik a rangsor- és a hierarchia kezelés. Van egy táblánk, amelynek egyik mezőjében minden bejegyzés egyedi. Például a "megyék" táblában a "megye" mező bejegyzései. Ezek a bejegyzések csoportokba sorolhatók, a tábla egy másik mezőjének bejegyzései alapján. A példánknál maradva, a megyék a "régió" mező bejegyzései alapján csoportosíthatók. A PowerPivot-kimutatással a csoportokat kívánom elemezni, de láttatni szeretném a csoport tagjait is. Azaz, meg kívánom állapítani a régiók városlakóinak számát, úgy, hogy a régiók neve mellett látható legyen a régióhoz tartozó megyék listája is. Valahogy így!

|   | régió 🗾 🔽          | megye 🔽                | városi 🔽  |
|---|--------------------|------------------------|-----------|
| 1 | Közép-Magyarország | Pest                   | 2 367 753 |
| 2 | Észak-Alföld       | Hajdú-Bihar            | 431 311   |
| 3 | Észak-Magyarország | Borsod-Abaúj-Zemplén   | 416 526   |
| 4 | Dél-Alföld         | Bács-Kiskun            | 346 716   |
| 5 | Dél-Alföld         | Csongrád               | 314 162   |
| 6 | Észak-Alföld       | Szabolcs-Szatmár Pereg | 280 539   |

| régió              | Ŧ | MEGYÉK                                                  | Ŧ | Összeg - városi 💌 |
|--------------------|---|---------------------------------------------------------|---|-------------------|
| Dél-Alföld         |   | Bács-Kiskun Békés Csongrád                              |   | 936 722           |
| Dél-Dunántúl       |   | Baranya Somogy Tolna                                    |   | 557 666           |
| Észak-Alföld       |   | Hajdú-Bihar Jász-Nagykun-Szolnok Szabolcs-Szatmár-Bereg |   | 987 002           |
| Észak-Magyarország |   | Borsod-Abaúj-Zemplén Heves Nógrád                       |   | 658 076           |
| Közép-Dunántúl     |   | Fejér   Komárom-Esztergom   Veszprém                    |   | 646 338           |
| Közép-Magyarország | 3 | Pest                                                    |   | 2 367 753         |
| Nyugat-Dunántúl    |   | Győr-Moson-Sopron Vas Zala                              |   | 568 470           |
|                    |   |                                                         |   |                   |



A feladat megoldását az egy régióba tartozó megyék rangsorolásával kezdjük. Ezután a sorszámok alapján listát hozunk létre a megyék nevéből, majd a listát a PATH függvénnyel íratjuk ki. A példa algoritmusa a következő.

[1] A megyék sorszámozása, régiónként újrakezdve. RS: =RANKX( FILTER( ALL( 'megyék' ); [régió] = EARLIER( [régió] )); [megye];; 1; DENSE ).

[2] A régió rangsorában az adott megyét megelőző megye sorszámának képzése. FEL RS: =IF( [RS] <> 1; [RS] - 1).

[3] A felettes megye nevének képzése. P1: =CALCULATE( FIRSTNONBLANK( 'megyék'[megye]; 1); FILTER( ALLEXCEPT( 'megyék'; 'megyék'[régió]); [RS] = EARLIER( [FEL RS] ))).

[4] A következő lépés az adott megye függőségi sorának képzése. P2: =PATH( [megye]; [P1] ).

[5] Az utolsó művelet minden megyéhez kiíratni a saját régiójában, a rangsor végén álló megye függőségi sorát. MEGYÉK: =CALCULATE( PATH( [megye] ; [P1] ) ; CALCULATETABLE( FILTER( 'megyék'; [RS] = MAX( [RS] )) ; ALLEXCEPT( 'megyék'; 'megyék'[régió] ))).

|   | régió 🔽      | megye 🔽     | városi 🔽 | RS 💌 | FEL RS 💌 | P1 💌        | P2                         |
|---|--------------|-------------|----------|------|----------|-------------|----------------------------|
| 1 | Dél-Alföld   | Bács-Kiskun | 346 716  | 1    |          |             | Bács-Kiskun                |
| 2 | Dél-Alföld   | Békés       | 275 844  | 2    | 1        | Bács-Kiskun | Bács-Kiskun Békés          |
| 3 | Dél-Alföld   | Csongrád    | 314 162  | 3    | 2        | Békés       | Bács-Kiskun Békés Csongrád |
| 4 | Dél-Dunántúl | Baranya     | 258 582  | 1    |          |             | Baranya                    |
| 5 | Dél-Dunántúl | Somogy      | 164 252  | 2    | 1        | Baranya     | Baranya Somogy             |
| 6 | Dél-Dunántúl | Tolna       | 134 832  | 3    | 2        | Somogy      | Baranya Somogy ToIna       |
| 7 | Észak-Alföld | Haidú-Bihar | 431 311  | 1    |          |             | Haidú-Bihar                |

220. ábra a számított mezőkkel kiegészített tábla részlete

A képen a megyéket, régiónként újrakezdve, ABC sorrendben ábrázoltam az algoritmus könnyebb megértése érdekében. A feladat megoldása tehát egy hierarchia-szimuláción alapult, amelyet az egy kategoriába tartozó elemek sorszámozása tett lehetővé. Az elemek csoportonkénti indexelése részösszegek képzését is lehetővé teszi. Ezt a lehetőséget mutatom be a következő példán.

| 1 | AZ 🔽 | ügynök 🖃 | eladás 🛛 💌 | SSZÁM 💽 | ELDB 💌 | UTOLSÓ 💽 | RÖSSZ 🗾 |
|---|------|----------|------------|---------|--------|----------|---------|
| 1 | 01   | Α        | 2          | 1       | 3      | HAMIS    |         |
| 2 | 03   | Α        | 2          | 2       | 3      | HAMIS    |         |
| 3 | 07   | Α        | 3          | 3       | 3      | IGAZ     | 7       |
| 4 | 02   | В        | 4          | 1       | 2      | HAMIS    |         |
| 5 | 05   | В        | 1          | 2       | 2      | IGAZ     | 5       |
| 6 | 04   | С        | 2          | 1       | 2      | HAMIS    |         |
| 7 | 06   | С        | 2          | 2       | 2      | IGAZ     | 4       |

221. ábra

az "eladások" tábla a részösszeg-képzés négy számított mezőjével

A képen látható tábla eladásait szeretnénk összegezni ügynökök szerint. Az áttekinthetőség érdekében a feladatot négy lépésben, külön-külön számított mezőkkel oldjuk meg!

[1] A tábla rendezése a csoportosító mező (ügynök) értékei alapján.

[2] Az ügynök eladásainak sorszámozása. SSZÁM: = RANKX( FILTER( ALL( 'eladások' ); [ügynök] = EARLIER( [ügynök] )); [AZ];; 1; DENSE ).

[3] Az ügynök eladásai darabszámának képzése. ELDB: = COUNTROWS( FILTER( ALL('eladások' ) ; [ügynök] = EARLIER( [ügynök] ))).

[4] Az ügynök utolsó eladásának megállapítása. UTOLSÓ: = [SSZÁM] = [ELDB].

[5] Részösszeg képzése. RÖSSZ: = IF( [UTOLSÓ]; CALCULATE( SUM( [eladás] ); ALLEXCEPT( 'eladások'; 'eladások'[ügynök] ))). 222. ábra a részösszeg számítás egyetlen képletben

A DAX harmadik rangsor-kezelő függvénye a TOPN függvény. A függvény, a Microsoft megfogalmazása szerint, egy virtuálisan rendezett tábla első n rekordját adja eredményül. A függvény argumentumlistája négy elemből áll. [1] A visszaadandó rekordok számát adó kifejezés vagy konstans. [2] A tábla neve vagy táblát eredményező kifejezés. [3] A rendező-mező neve. [4] Nem kötelező argumentum a rendezési sorrend megfordítására: ha nem a rangsor szerint csökkenő, hanem emelkedő rendezést szeretnénk, akkor az argumentum értéke egy (1).

| 1 | város AZ 🛛 🔽 | város 🔽         | lakos 🔽 |
|---|--------------|-----------------|---------|
| 1 | 001          | Abony           | 15 679  |
| 2 | 002          | Ajka            | 31 805  |
| 3 | 003          | Aszód           | 6 428   |
| 4 | 004          | Bácsalmás       | 7 650   |
| 5 | 005          | Baja            | 37 916  |
| 6 | 006          | Baktalórántháza | 4 136   |
| 7 | 007          | Balassagyarmat  | 18 474  |
|   | 3In: 399 556 | 31k: 5 096      |         |
|   |              | ~ ~             |         |

223. ábra a "városok" tábla két egyéni összesítéssel

A képen látható tábla a magyar városok és a fővárosi kerületek lakosságát tartalmazza. Kíváncsiak vagyunk a három legnagyobb és a három legkisebb lakosságú város lakosainak összegére. Az első kérdésünkre a "3ln" válaszol: SUMX(TOPN(3; 'városok'; [lakos]); [lakos]). A három legkisebb lakosságú város lakóinak összegét a "3lk" adja: SUMX(TOPN(3; 'városok'; [lakos]; 1); [lakos]). A két képlet majdnem azonos, csak a TOPN függvény negyedik argumentumában különbözik. Az első képletből hiányzik ez az argumentum, tehát a rendezés sorrendje növekvő, míg a második képlet csökkenő sorrendű rendezést ír elő.

A TOPN függvény képes több-kulcsos virtuális rendezésre is, sőt a rendezés alapja számított érték is lehet. Nézzünk egy példát e két tulajdonság szemléltetésére is!

| 1 | ügynök AZ 🛛 🔽  | kategória 🗾 | bevétel 💽    | kezdés 💽      | zárás 🗾 💌     |
|---|----------------|-------------|--------------|---------------|---------------|
| 1 | 01             | A           | 800 000 Ft   | 2019. 01. 23. | 2019. 02. 17. |
| 2 | 02             | В           | 1 050 000 Ft | 2019. 05. 23. | 2019. 07. 12. |
| 3 | 03             | A           | 1 100 000 Ft | 2019. 05. 14. | 2019. 06. 20. |
| 4 | 04             | A           | 1 150 000 Ft | 2019. 04. 24. | 2019. 06. 20. |
| 5 | 05             | С           | 900 000 Ft   | 2019. 04. 30. | 2019. 06. 06. |
| 6 | 06             | С           | 1 250 000 Ft | 2019. 01. 24. | 2019. 03. 25. |
| 7 | 07             | В           | 1 050 000 Ft | 2019. 05. 02. | 2019. 06. 20. |
|   | 13ö: 2 900 000 |             |              |               |               |
|   |                |             |              |               |               |

<sup>224.</sup> ábra a "ügynökök" tábla

Az "ügynökök" tábla kategorizált üzletkötők, különböző időszakokra eső árbevételét tartalmazza. A munka hatékonyságát jól jellemzi az árbevétel egy napra eső hányada, amelyet a határnapok segítségével egyszerűen képezhetünk. Az "13ö" egyéni összesítéssel a legmagasabb kategoriába (A) sorolt üzletkötők, három legnagyobb napi árbevételt produkált bevételének összegét számoljuk ki: =CALCULATE( SUM( [bevétel] ) ; TOPN( 3 ; 'ügynökök' ; [kategoria] ; 1 ; [bevétel] / ( [zárás] - [kezdés] ))). A TOPN függvény argumentumlistájában tehát a második elem után, az argumentumok párban állnak: rendező értékek – rendezési sorrend. A szokásos rendezési sorrend a csökkenő, ezt az argumentumlista végén nem kell megadnunk, közbenső argumentum esetén nullával (0) vagy üres argumentummal kell jelölnünk.

A rangsor kezelő DAX függvények tehát a skip és a dense módszerrel rangsorolják a halmaz azonos elemeit. Mindkét eljárás ismétlődő sorszámokat eredményez és ez nem minden helyzetben elfogadható. Az ismétlődéseket nem tartalmazó rangsor-pozíció képzése két statisztikai érték összegéből áll: [1] az elemzett szám hányszor fordul elő a halmazban az elemzett szám pozíciójáig, az elemzett számot is beleértve, [2] hány szám nagyobb a halmazban az elemzett számnál. Nézzünk egy példát!

Adott egy kilenc-rekordos tábla. Két mezője: a kulcs mező és egy számokat tartalmazó mező. Az ismétlődések nélküli rangsor-pozíciókat, a képletek jó olvashatósága érdekében, három számított mezővel képezzük. Először az EDDIG számított mezővel megállapítjuk az egyes számok előfordulásának darabszámát a vizsgált számot tartalmazó rekorddal bezárólag. Ezután a NAGYOBB számított mezővel megszámláljuk, hány szám nagyobb a táblában a vizsgált számnál. Végül a RSOR számított mezővel összeadjuk a két statisztikai értéket. A negyedik, FORD nevű, számított mezővel fordított rangsort képeztem.

| 1  | AZ 🔽                                                        | szám 🔽        | EDDIG 🗾         | NAGYOBB 🔽          | RSOR 🗾             | FORD 🔽            |  |  |  |
|----|-------------------------------------------------------------|---------------|-----------------|--------------------|--------------------|-------------------|--|--|--|
| 1  | 01                                                          | 54            | 1               | 3                  | 4                  | 6                 |  |  |  |
| 2  | 02                                                          | 72            | 1               |                    | 1                  | 8                 |  |  |  |
| 3  | 03                                                          | 72            | 2               |                    | 2                  | 9                 |  |  |  |
| 4  | 04                                                          | 41            | 1               | 4                  | 5                  | 3                 |  |  |  |
| 5  | 05                                                          | 69            | 1               | 2                  | 3                  | 7                 |  |  |  |
| 6  | 06                                                          | 33            | 1               | 7                  | 8                  | 2                 |  |  |  |
| 7  | 07                                                          | 15            | 1               | 8                  | 9                  | 1                 |  |  |  |
| 8  | 08                                                          | 41            | 2               | 4                  | 6                  | 4                 |  |  |  |
| 9  | 09                                                          | 41            | 3               | 4                  | 7                  | 5                 |  |  |  |
|    |                                                             |               |                 | 1                  | 1                  | 1                 |  |  |  |
| ì  | =COUNTRO                                                    | WS( FILTER( F | FILTER( 'számok | ' ; [AZ] <= EARLIE | R( [AZ] )) ; [szár | n] = EARLIER( [sz |  |  |  |
| BB | =COUNTROWS( FILTER( 'számok' ; [szám] > EARLIER( [szám] ))) |               |                 |                    |                    |                   |  |  |  |
|    | =[EDDIG] +                                                  | [NAGYOBB]     |                 |                    |                    |                   |  |  |  |
|    | =[EDDIG] +                                                  | COUNTROWS     | SCELLTERC'szám  | ok' · [szám] < FA  | RUER( [szám] )     | 11                |  |  |  |

225. ábra az "számok" tábla és négy számított mezőjének képlete

A TOPN függvényt most már a saját számításon alapuló rangsorral tudjuk használni. Például képeznünk kell a három legnagyobb szám összegét: =SUMX(TOPN(3; A; [RSOR]); [szám]).

Természetesen az ismétlődések nélküli rangsor-pozíció képzésnek ez a módszere, csak akkor használható, ha a tábla rendelkezik egy olyan numerikus- vagy számmá konvertálható adattípusú mezővel, amely folyamatosan növekvő értékeket tartalmaz az egyes rekordokban.

### szöveg-kezelő függvények

A karakterláncok feldolgozását végző DAX függvényeket két csoportba sorolhatjuk: [1] a szöveg valamely tulajdonságát vizsgálókra és [2] a kiinduló karakterláncot átalakítókra.

Az UNICODE függvény az egyetlen argumentumával megadott szöveg első karakterének számát adja az UNICODE rendszerben. Az ellentétes műveletnek, számból karaktert, nincs függvénye.

Az első csoportba tartozik a bővítmény LEN függvénye, amely az egyetlen argumentumával meghatározott szöveg karaktereinek darabszámát adja eredményül.

Karakterláncok összehasonlítását az EXACT függvénnyel kérhetjük. Az összehasonlítandó szövegeket a függvény két argumentumával adjuk meg. A vizsgálat eredménye logikai érték: ha a két szöveg azonos, akkor IGAZ, különben HAMIS. Az alábbi ábrán a függvény működést mutatom be.

| 1 | AZ 🔽 | szöveg1 🔽 | szöveg2 🔽 | AZONOS 🔽 | logmű 🛛 🔽 |
|---|------|-----------|-----------|----------|-----------|
| 1 | 01   | tűrő      | TŰRŐ      | HAMIS    | IGAZ      |
| 2 | 02   | tűrő      | turo      | HAMIS    | HAMIS     |
| 3 | 03   | tűr ő     | tűr ő     | IGAZ     | IGAZ      |
| 4 | 04   | tűr ő     | tűr ő     | HAMIS    | HAMIS     |

226. ábra az AZONOS számított mező képlete: EXACT( [szöveg1] ; [szöveg2] )

A kép tanúsága szerint a függvény megkülönbözteti a kis- és nagybetűket, az ékezet nélküli és az ékezetes betűket, sőt még a különböző kódú szóközkaraktereket is. Utóbbi ok miatt kaptunk HA-MIS eredményt a negyedik rekordban. Amennyiben az összehasonlításban nincs szerepe a kis és a nagybetűk eltérésének, használjunk logikai műveletet: = [szöveg1] = [szöveg2]. Ennek a kifejezésnek az eredményét láthatjuk a kép LOGMŰ számított mezőjében.

Szövegben karakterláncot a FIND és a SEARCH függvénnyel kereshetünk. Argumentumaik azonosak: [1] A keresett szöveg meghatározása. Ha konstans, idézőjelek között kell állnia. [2] A gazdaszöveg meghatározása. [3] A keresés induló-karakterének sorszáma a gazdaszövegben. Másként fogalmazva, a gazdaszöveg hányadik karakterétől kezdődően keressen a függvény. Nem kötelező argumentum. Szokásos értéke egy. Elhagyását üres argumentummal kell jelölni. [4] A függvény eredménye ha nincs találat. Nem kötelező argumentum. A bővítmény csak előjeles egész számot vagy a BLANK függvényt fogadja el ebben az argumentumban.

A függvény eredménye: [1] sikeres vizsgálatot követően, a keresett szöveg első karakterének sorszáma a gazdaszövegben, [2] sikertelen vizsgálatot követően, a negyedik argumentumban megadott szám vagy üres bejegyzés. Sikertelen vizsgálatot követően, ha a negyedik argumentum nincs megadva, a vizsgálat hibaértéket eredményez.

A keresés kezdő pozíciójának deklarálása a találat pozíciójának sorszámozását nem befolyásolja.

| 1 | AZ 🔽 | keresett sz 🛛 💌 | gazdasz 🛛 🔽   | FIND 🗾 | SEARCH 💽 |
|---|------|-----------------|---------------|--------|----------|
| 1 | 01   | lapos           | kalaposinas   | 3      | 3        |
| 2 | 02   | szent           | PESTSZENTIMRE |        | 5        |
| 3 | 03   | MÁR             | KALAMÁRIS     | 5      | 5        |
| 4 | 04   | aj tó           | tutaj tóval   |        |          |
| 5 | 05   | Tojás           |               |        |          |
| 6 | 06   |                 | Tóbiás        | 1      | 1        |

227. ábra szöveg keresése a FIND és SEARCH függvényekkel

A képen látható tábla két számított mezőjének képlete azonos: FIND/SEARCH( [keresett sz]; [gazdasz]; ; BLANK()). A függvények alapvetően azonosan működnek, de a SEARCH nem tesz különbséget kis- és nagybetűk között. Ezt látjuk a második rekordban. Mindkét függvény az eltérő kódú szóközöket különböző karaktereknek tekinti. Ezt a tulajdonságot a negyedik rekordban figyelhetjük meg. Az üres, vagy nulla hosszúságú gazdaszöveg sikertelen vizsgálatot, az üres vagy nulla hosszúságú keresett szöveg egyet (1) eredményez.

A SEARCH függvény első és második argumentumában helyettesítő karakterek (\*, ?) is állhatnak. A mezőnevekhez és kifejezésekhez szövegösszefűzéssel kapcsolhatjuk a joker-karaktereket: "?" & [mezőnév]. Ha magát a csillagot vagy a kérdőjelet keressük a gazdaszövegben, akkor ezt tilde karakterrel jelöljük (~\*, ~?). A hullámvonal karaktert is szövegösszefűzéssel kell a mezőnévhez vagy a kifejezéshez kapcsolni.

Mint említettem, a negyedik argumentum csak előjeles egész szám vagy üres bejegyzés lehet. A korlátozást az IFERROR függvénnyel nem tudjuk kikerülni, mert a bővítmény ennél a függvénynél sem enged az első argumentumától eltérő adattípusú eredményt deklarálni. A megoldást az IF és az ISERROR függvények kombinációja adja: IF( ISERROR( FIND/SARCH( <keresett szöveg> ; <gazdaszöveg> )) ; <alternatív adattípusú eredmény> ).

A szövegkezelő függvények második csoportjába azokat a függvényeket soroljuk, amelyek a kiindulásként kapott karakterlánc átalakítását végzik. A REPT függvény az első argumentumával meghatározott karakterláncot fűzi össze a másolataival. Az eredményül kapott karakterlánc, a függvény második argumentumával meghatározott darabszámban fogja tartalmazni a kiinduló szöveget.

A CONCATENATE függvény a két argumentumával meghatározott szöveget fűzi össze egyetlen karakterlánccá. Ha több elemet szeretnénk egyesíteni, használjuk inkább az ampersand (&) operátort.

| 4 | AZ 🔽 | osztály 🔽 | csoport 🔽 | KÓD1 💽 | KÓD2 💽 |
|---|------|-----------|-----------|--------|--------|
| 1 | 01   | В         | 1         | В      | B1     |
| 2 | 02   | С         | 2         | CC     | C2     |
| 3 | 03   | Α         | 1         | Α      | A1     |
| 4 | 04   | В         | 3         | BBB    | B3     |
| 5 | 05   | Α         | 1         | Α      | A1     |
| 6 | 06   | В         | 2         | BB     | B2     |

228. ábra a KÓD1 és KÓD2 számított mezők képlete: REPT/CONCATENATE( [osztály] ; [csoport] )

A CONCATENATEX függvény a tábla minden rekordjában kiértékel egy kifejezést, majd az eredményeket szövegként összefűzve jeleníti meg. A lista elemeinek sorrendjét és a szeparációját a felhasználó határozhatja meg. Argumentumlistája a következő. [1] Egy tábla vagy táblát eredményező kifejezés. [2] A tábla minden rekordjában kiértékelendő kifejezés. [3] A lista elemeit elválasztó karakter vagy karakterlánc, idézőjelek között megadva. Nem kötelező argumentum. [4] A rendezés alapját adó mező neve vagy egy kifejezés, amelynek eredményei alapján lesz rendezve a lista. Nem kötelező argumentum. [5] A rendezés irányát meghatározó argumentum. Lehetséges értékei: ASC, DESC. Nem kötelező argumentum. A rendezés több kulcs alapján is történt, ezért a négyes és az ötös argumentum ismételhető.

A függvény működését "szerszámok" táblán mutatom be. A tábla tartalmazza a szerszám nevét, gyártóját, árát és az eladás darabszámát. Készítsünk kimutatást, amely összegzi az eladásokat gyártók szerint! A pivot-táblában jelenítsük meg az adott szerszám választékát is!

|   | szerszám AZ  💌 | név    | ¥   | gyártó | × | ár 💌         | darab     | ×  |                | név    | gyártó | ár      |
|---|----------------|--------|-----|--------|---|--------------|-----------|----|----------------|--------|--------|---------|
| 1 | 01             | fúró   |     | O&A    |   | 60           |           | 7  |                | fúró   | Bart   | 30 HUF  |
| - |                |        |     |        |   |              |           | -  |                | fúró   | 0&A    | 60 HUF  |
| 2 | 02             | veso   |     | Berry  |   | 200          |           | 8  |                | fúró   | Sempl  | 150 HUF |
| 3 | 03             | fúró   | név | /      | - | vála         | szték     |    | Osszeg - darab | fogó   | Taro   | 360 HUF |
| 4 | 04             | véső   | f   | ogó    |   | Taro   Bart  |           |    | 25             | fogó   | Bart   | 270 HUF |
| - |                |        | f   | úró    |   | Sempl   0&/  | A   Bart  |    | 42             | véső   | AloCo  | 350 HUF |
| 5 | 05             | furesz | fi  | űrész  |   | Perry   Sós  | T&G   Zo  | pe | 56             | véső   | Certi  | 50 HUF  |
| 6 | 06             | fogó   | V   | éső    |   | AloCo   Berr | y   Certi |    | 79             | véső   | Berry  | 200 HUF |
| 7 | 07             | fúró   |     | Bart   |   | 30           |           | 8  |                | fűrész | Zope   | 280 HUF |
|   | 00             |        |     | Denne  |   | 200          |           |    |                | fűrész | T&G    | 350 HUF |
| 8 | 08             | veso   |     | Berry  |   | 200          |           | 4  |                | fűrész | Sós    | 350 HUF |
| 9 | 09             | fűrész |     | Perry  | _ | 420          |           | 4  |                | fűrész | Perry  | 420 HUF |
|   |                |        |     |        |   |              |           |    |                |        |        |         |

választék =CONCATENATEX( SUMMARIZE( 'szerszámok' ; [név] ; [gyártó] ; [ár] ) ; [gyártó] ; " | " ; [ár] ; DESC )

229. ábra a példa objektumai

A "választék" egyéni összesítés képletében a SUMMARIZE függvény összesítő táblát hoz létre a "szerszámok" táblából a "név", a "gyártó" és az "ár" mezők egyedi bejegyzései alapján. Ezt a virtuális táblát láthatjuk a kép bal oldalán. Az UPPER és a LOWER függvények a karakter-konverzió eszközei. Előbbi a kiindulásként kapott karakterlánc kisbetűit nagybetűkre, utóbbi a karakterlánc nagybetűit kisbetűkre cseréli.

A LEFT, a RIGHT és a MID függvények az első argumentumukkal megadott karakterlánc egy darabját adják eredményül. A LEFT és a RIGHT függvények az első argumentumukkal meghatározott szöveg elejéről illetve végéről, a második argumentumukkal megadott darabszámú karaktert adják eredményül. A szöveg közepéről a három-argumentumos MID függvénnyel "vághatunk" ki egy darabot. A gazdaszöveget az első, az eredmény-szöveg első karakterének sorszámát a második és az eredmény-szöveg karaktereinek számát a harmadik argumentummal határozhatjuk meg. Tehát: MID( <gazdaszöveg>; <az eredmény-szöveg első karakterének sorszáma a gazdaszövegben>; <az eredmény-szöveg hossza karakterben> ).

|   | város AZ 🛛 🔽 | város 🛛 🔽  | megye 🔽           | régió 🔽            | RÉGIÓR 🛛 🔽 |
|---|--------------|------------|-------------------|--------------------|------------|
| 1 | 001          | Abony      | Pest              | Közép-Magyarország | KM         |
| 2 | 002          | Ajka       | Veszprém          | Közép-Dunántúl     | KD         |
| 3 | 003          | Albertirsa | Pest              | Közép-Magyarország | КМ         |
| 4 | 004          | Aszód      | Pest              | Közép-Magyarország | КМ         |
| 5 | 005          | Bábolna    | Komárom-Esztergom | Közép-Dunántúl     | KD         |
| 6 | 005          | Bácsalmás  | B≜cs-Kiskun       | Dél-Alföld         | DA         |

230. ábra példa a MID függvény alkalmazására a RÉGIÓR számított mezőben

Nézzünk egy komplex feladatot, a MID függvény alkalmazására. A fenti tábla magyar városok adatait tartalmazza. Hozzunk létre egy számított mezőt, amely a város régiójának nevét rövidítve mutatja. Minden régió neve két, nagybetűvel kezdődő karakterláncból áll, kötőjellel elválasztva. A rövidítés a két karakterlánc első karaktereiből álljon!

A rövidítés első betűje a "régió" mező bejegyzésének első karaktere: LEFT( [régió]; 1). A rövidítés második betűjét a mező minden bejegyzésében a kötőjel előzi meg. Állapítsuk meg az elválasztó karakter pozícióját a "régió" mezőben: FIND( "-"; [régió]). A rövidítés második karakterének pozíciója a "régió" mezőben: FIND( "-"; [régió]) + 1. Magát a karaktert a pozíciója ismeretében a MID függvénnyel képezhetjük: MID( [régió]; FIND( "-"; [régió]) + 1; 1). A rövidítés két betűjének összefűzését a CONCATENATE függvénnyel végezzük: CONCATENATE( LEFT( [régió]; 1); MID( [régió]; FIND( "-"; [régió]) + 1; 1)).

A REPLACE és a SUBSTITUTE függvények a kiindulásként kapott karakterlánc egy darabját lecserélik egy másik karakterláncra. Az átalakítandó karakterlánc a gazdaszöveg. A gazdaszöveg azon darabja, amely törlésre kerül, a cserélendő szöveg. A törlés után a gazdaszövegbe illesztendő karakterlánc az új szöveg. A REPLACE függvény alkalmazásakor a cserélendő szöveg pozícióját és hoszszát, a SUBSTITUTE esetén magát a cserélendő szöveget kell megadnunk.

A REPLACE függvény argumentumai a következők. [1] A gazdaszöveg deklarációja. [2] A cserélendő szöveg első karakterének sorszáma a gazdaszövegben. [3] A cserélendő szöveg karaktereinek darabszáma. [4] Az új szöveg deklarációja. Üres karakterláncot ("") adjunk meg, ha csak a cserélendő szöveg törlése a célunk!

A SUBSTITUTE függvény argumentumai a következők. [1] A gazdaszöveg deklarációja. [2] A cserélendő szöveg deklarációja. [3] Az új szöveg deklarációja. [4] Egy pozitív egész szám, a cserélendő szöveg cserélendő előfordulásának sorszáma. Másként fogalmazva, ezzel az argumentummal határozhatjuk meg azt, hogy a gazdaszövegben többször előforduló cserélendő szöveg hányadik előfordulása legyen kicserélve. Nem kötelező argumentum. Ha nincs megadva a cserélendő szöveg összes előfordulásában ki lesz cserélve az új szövegre. A SUBSTITUTE függvény a cserélendő szöveg keresésekor a kis és nagybetűket megkülönbözteti. Ha a függvény nem találja a gazdaszövegben a cserélendő szöveget, akkor a gazdaszöveget adja eredményül.

Lássunk egy komplex feladatot, amelynek megoldásában a SUBSTITUTE függvény is szerepel! Adott egy kétmezős tábla, amelyben autóbusz járatok azonosítóját ("járat" mező) és az útjuk során érintett városok listáját ("útvonal" mező) tartalmazza, szóközökkel elválasztva. Hozzunk létre számított mezőt, INDULÓ ÁLL néven, amely az útvonal első városát mutatja!

| 1 | járat 💌 | útvonal 💌                           | INDULÓ ÁLL 💽   |
|---|---------|-------------------------------------|----------------|
| 1 | BU015   | Budapest Hatvan Miskolc Nyíregyháza | Budapest       |
| 2 | SO055   | Szolnok Békéscsaba Lököshaza        | Szolnok        |
| 3 | DE013   | Debrecen Záhony Csao                | Debrecen       |
| 4 | BU654   | Budapest Pusztaszabolcs Pécs        | Budapest       |
| 5 | SÉ052   | Székesfehérvár Siófok Nagykanizsa   | Székesfehérvár |
| 6 | K0007   | Komárom Győr Sopron                 | Komárom        |

231. ábra a példa táblája az INDULÓ ÁLL számított mezővel

A bővítmény nyelvén így fogalmazhatnánk meg a feladatot: ki kell íratnunk az "útvonal" mező bejegyzéséből az első szóközig tartó darabot. Az első szóköz pozíciójának sorszámát a bejegyzésben a FIND függvénnyel határozhatjuk meg: FIND(""; [útvonal]). Ha a kapott számból kivonunk egyet az első város karaktereinek darabszámát kapjuk. Ennek ismeretében a LEFT függvénnyel már kiírathatjuk az induló állomás városának nevét: LEFT( [útvonal]; FIND(""; [útvonal]). - 1).

A második feladat a végállomás városának kiíratása. Vegyük sorra a megoldás lépéseit! [1] Megszámláljuk, hány szóközt tartalmaz az útvonal. [2] Az utolsó szóközt lecseréljük egy olyan karakterre, amely biztosan nem szerepel az útvonal karakterei között. [3] Megállapítjuk a beillesztett karakter pozíciójának sorszámát az útvonalban. [4] A sorszámból és az útvonal karaktereinek számából kiszámítjuk az utolsó városnév karaktereinek darabszámát. [5] Kiíratjuk a az útvonal végéről a kapott darabszámú karaktert.

[1] Az egyes lépéseket, az áttekinthetőség érdekében, külön-külön számított mezőkkel oldjuk meg. Az útvonalban álló szóközök számát az útvonal karaktereinek száma és a szóközöktől megtisztított útvonal karakterei számának különbsége adja. A szóközök eltávolítását a SUBSTITUTE függvénnyel végezzük: SUBSTITUTE( [útvonal]; ""; ""). A két szöveg karaktereinek számát a LEN függvénnyel kérdezzük le. SZÓKÖZÖK SZÁMA: =LEN( [útvonal]) - LEN( SUBSTITUTE( [útvonal]; ""; "")).

[2] Megállapítottuk tehát az útvonalban szereplő szóközök számát. Ez a darabszám azonos a szóköz utolsó előfordulásának sorszámával. Ezt a szóközt kell lecserélnünk, egy olyan karakterre, amely biztosan nem szerepel az útvonalban. Legyen ez a karakter a felkiáltójel. MÓDOSÍTOTT ÚT-VONAL: =SUBSTITUTE( [útvonal]; ""; "!"; [SZÓKÖZÖK SZÁMA] ).

[3] A felkiáltójel pozíciójának sorszámát az útvonalban a FIND függvénnyel állapítjuk meg. FEL-KIÁLTÓJEL SORSZÁMA: =FIND( "!"; [MÓDOSÍTOTT ÚTVONAL]).

[4] A felkiáltójel pozíciójának sorszáma azonos az útvonal karaktereinek számával a felkiáltójellel bezárólag. Ha ezt a számot kivonjuk az útvonal karaktereinek számából, akkor megkapjuk az útvonal utolsó városának nevét alkotó karakterek számát. CÉL KARAKTEREINEK SZÁMA: =LEN([útvonal]) - [FELKIÁLTÓJEL SORSZÁMA].

[5] Az útvonal utolsó városnevének karakter-hosszát ismerve már ki tudjuk íratni a városnevet is. CÉL ÁLL: =RIGHT( [útvonal]; [CÉL KARAKTEREINEK SZÁMA] ).

> =RIGHT( [útvonal]; LEN( [útvonal]) - FIND( "!"; SUBSTITUTE( [útvonal]; ""; "!"; LEN( [útvonal] - LEN( SUBSTITUTE( [útvonal]; ""; "")))))

> > 232. ábra a feladat megoldásának képlete

Az utolsó szöveg-alakító függvény a TRIM, a program KIMETSZ függvényének DAX megfelelője. A függvény eltávolítja a 32-es kódszámú szóközöket az egyetlen argumentumával megadott karakterlánc elejéről és végéről, valamint a karakterláncban egymás után álló ismétlődéseit. Utóbbit másként fogalmazva, törli a szövegben az egymás után álló szóközöket, az első kivételével. A 160-as kódú szóközöket a függvény nem veszi figyelembe. A 160-as kódú szóközöket tartalmazó karakterláncokat a SUBSTITUTE függvény segítségével tudjuk megtisztítani a felesleges szóközöktől: TRIM( SUBTITUTE( [szöveg]; ""; "")). A SUBSTITU-TE függvény második, idézőjelek között álló argumentumát az ALT billentyű folyamatos nyomása mellett, a numerikus billentyűzeten, a 0160 kóddal kell "beírnunk".

Tehát a szöveg-kezelő függvényeket funkciójuk alapján két nagy csoportba sorolhatjuk. Az első csoportba tartoznak a kiinduló karakterlánc vagy karakterláncok valamely tulajdonságát vizsgálók, a második csoportba pedig a kapott karakterláncot átalakítók.

| csoportosító<br>funkció | függvény<br>neve | függvény<br>funkciója                      |  |  |
|-------------------------|------------------|--------------------------------------------|--|--|
|                         | UNICODE          | karakter UNICODE számát képzi              |  |  |
|                         | LEN              | szöveg karaktereinek megszámlálása         |  |  |
| tulajdonsag             | FIND             | szäveg korosása a karakterlánsban          |  |  |
| iekei üezese            | SEARCH           | szöveg kelesese a kalaktellancbali         |  |  |
|                         | EXACT            | két karakterlánc összehasonlítása          |  |  |
|                         | REPT             | szöveg összefűzése másolataival            |  |  |
|                         | CONCATENATE      | két karakterlánc összefűzése               |  |  |
|                         | UPPER            | kich at" na sub at" konvortálác            |  |  |
|                         | LOWER            | Kisbetu-Hagybetu Konvertalas               |  |  |
| szöveg                  | LEFT             |                                            |  |  |
| átalakítása             | MID              | karakterianc egy darabjanak kivagasa       |  |  |
|                         | RIGHT            | a karaktenane elejeroi, kozeperoi, vegeroi |  |  |
|                         | REPLACE          | czävogccoro z karaktorlánchan              |  |  |
|                         | SUBSTITUTE       | SZOVEBCSELE A KALAKTELIALICDALI            |  |  |
|                         | TRIM             | szóközök eltávolítása                      |  |  |

233. ábra szöveg-kezelő függvények rendszerezése

Ahogy látjuk, a táblázatból hiányzik CONCATENANTEX függvény, mert se ide, nem tartozik, meg se oda nem tartozik. Lényegét tekintve nem szövegkezelő függvény, de statisztikai függvénynek is csak fenntartásokkal nevezhetnénk... Ezért azután ebben a fejezetben mutattam be, de a rendszerező táblázatban már nem mertem szerepeltetni.

## tábla-kezelő függvények

A SAMPLE függvénnyel teszt-rekordokat kérhetünk egy rendezett, valóságos vagy virtuális táblából. A függvény három kötelező argumentumával tudjuk deklarálni [1] a kért rekordok számát, [2] a táblát és [3] a rendező-mezőt. A függvény a rendező-mező bejegyzései alapján csökkenő sorrendet állít be. További argumentumokkal többmezős rendezést is kérhetünk, de akkor meg kell határoznunk a rendezés irányát is: [csökkenő sorrend] üres argumentum/o/FALSE/DESC, [emelkedő sorrend] 1/TRUE/ASC.



234. ábra a SAMPLE függvény fekete betűszínű kötelező és szürke betűszínű opcionális argumentumai

Többmezős rendezés esetén az utolsó rendező mező után elhagyható az üres argumentum. A függvény eredménye a kiinduló tábla a minta-rekordokra "szűrve". A minta-vétel rendje: az első és az utolsó rekord, a rendezésnek megfelelően. A további rekordok sorszáma egy számtani sorozat elemei. Az egymást követő rekordok sorszámának különbsége kerekítve: <a tábla összes rekordjának száma> / ( <a minta-rekordok száma> - 1 ). Az ADDCOLUMNS függvénnyel virtuális számított mezőkkel bővíthetünk egy valóságos vagy virtuális táblát. A függvény első argumentuma a tábla-deklaráció, ezután az argumentumok párban állnak: név-kifejezés. Vizsgáljuk meg egy példán a függvény működését! Az elemzendő adatbázis két táblából áll: "kollégák", "munkák". A táblákat a "kolléga" mezővel kapcsoltam össze.

|   |               |            | dátum 🔽       | kolléga 🛛 🕆 🔽 | bevétel 🛛 🔽 |
|---|---------------|------------|---------------|---------------|-------------|
|   | kolléga 🛛 🖥 🔽 | bér 🔽      | 2018. 08. 03. | Α             | 580 000 Ft  |
| 1 | Δ             | 200.000 Ft | 2018. 08. 06. | Α             | 617 000 Ft  |
| 2 | B             | 180 000 Ft | 2018.08.06.   | С             | 409 000 Ft  |
| 2 | с<br>С        | 210 000 Ft | 2018.08.08.   | С             | 434 000 Ft  |
| 5 | C             | 210 000 11 | 2018. 08. 13. | Α             | 636 000 Ft  |
|   |               | 6          | 2018.08.16    | A             | 677.000 Ft  |



Ahogy a jobb oldali táblában látjuk a bevételek az egyes kollégákhoz köthetők. A munkatársak havi fizetése a "bér" mezőben álló fix összeg és az általuk produkált bevételek tíz százaléka. Készítsünk kimutatást az egyes kollégák havi fizetéséről!

| kolléga   | - | FIZETÉS       |
|-----------|---|---------------|
| Α         |   | 581 900 HUF   |
| В         |   | 308 800 HUF   |
| С         |   | 394 600 HUF   |
| Végösszeg |   | 1 285 300 HUF |



236. ábra a kimutatás és a FIZETÉS egyéni összesítés képlete

A SELECTCOLUMNS függvény egy virtuális táblát hoz létre az első argumentumával deklarált tábla alapján. A virtuális tábla mezőit a felhasználó határozza meg a függvény további argumentum-párosaival. A párok első elemeivel a mező nevét kell megadnunk idézőjelek között. A párosok második elemei kifejezések, amelyeket a függvény első argumentumával meghatározott tábla minden rekordjával kiértékel. A SELECTCOLUMNS függvény tehát egy új táblába helyezi a képzett mezőket, míg az ADDCOLUMNS függvény a képzett mezőkkel kiegészíti az első argumentumával deklarált táblát.

A ROW függvénnyel egyrekordos virtuális táblát hozhatunk létre. A függvény szintaktikája: ROW( "név<sub>1</sub>"; kifejezés<sub>1</sub>; "név<sub>2</sub>"; kifejezés<sub>2</sub>; ...; "név<sub>n</sub>"; kifejezés<sub>n</sub>). A függvény működését a "bevételek" tábla segítségével mutatom be: egy boltban a vásárlók készpénzzel vagy átutalással fizethetnek, de a jó vevők "hozomra" is vásárolhatnak.

| 1 | bevétel AZ 🛛 🔽 | bevétel 🗾 🔽 | jelleg 🗾 🔽           |
|---|----------------|-------------|----------------------|
| 1 | 01             | 165 000 HUF | hitel                |
| 2 | 02             | 199 000 HUF | átutalás             |
| 3 | 03             | 207 000 HUF | átutalás             |
| 4 | 04             | 191 000 HUF | késznó <del>na</del> |

237. ábra a "bevételek" tábla

Állapítsuk meg virtuális tábla segítségével a ténylegesen bevételt, azaz a hitelek nélküli bevétel öszszegét! A virtuális táblát a ROW függvénnyel hozzuk létre!

```
=SUMX(
ROW( "készpénz" ;
CALCULATE( SUM( [bevétel] ) ; 'bevételek'[jelleg] = "készpénz" ) ;
"átutalás" ;
CALCULATE( SUM( [bevétel] ) ; 'bevételek'[jelleg] = "átutalás" )) ;
[készpénz] + [átutalás] )
```

238. ábra a tényleges bevételt eredményező egyéni összesítés

A DATATABLE függvénnyel egy komplett virtuális táblát deklarálhatunk, rekordokkal együtt. Argumentum-listájának első elemei párban állnak: mezőnév idézőjelek között, és a mező adattípusának deklarációja: integer, double, string, boolean, currency, datetime (egész szám, tizedes tört szám, szöveg, logikai, pénz, dátum). A mezők meghatározását követően, kapcsos zárójelek között, a rekordok felsorolása következik. Minden rekordot, külön-külön, kapcsos zárójelekkel kell kereteznünk. A mezőbejegyzések csak konstansok lehetnek. Egyetlen kivétel a BLANK függvény, amellyel üres bejegyzést deklarálhatunk. Ugyanezt megtehetjük üres argumentummal is. A currency adattípusú mező bejegyzéseiben a pénznem-jelölőt a bővítmény nem fogadja el!

| =COUNTROWS(                                                 |
|-------------------------------------------------------------|
| DATATABLE( "név" ; string ;                                 |
| "eredmény"; integer;                                        |
| "értékelés" ; double ;                                      |
| "fizetés" ; currency ;                                      |
| "dátum" ; datetime ;                                        |
| "tartozás" ; boolean ;                                      |
| {                                                           |
| { "Pali" ; BLANK() ; 2,5 ; 300000 ; "2019-11-04" ; TRUE } ; |
| { "Mari" ; -4 ; 3,75 ; 400000 ; "2019-04-17 15:30" ; } ;    |
| { "Gabi" ; 0 ; ; 200000 ;"2019-07-07" ; FALSE }             |
| }))                                                         |

| név  | eredmény | értékelés | fizetés | dátum            | tartozás |
|------|----------|-----------|---------|------------------|----------|
| Pali |          | 2,5       | 300000  | 2019-11-04 00:00 | TRUE     |
| Mari | -4       | 3,75      | 400000  | 2019-04-17 15:30 |          |
| Gabi | 0        |           | 200000  | 2019-07-07 00:00 | FALSE    |

239. ábra a virtuális tábla deklarációja és megjelenítése

A DATATABLE függvényt nem mindig jeleníti meg a bővítmény a névkezelő listájában. Ennek ellenére, ha begépeljük a képletbe a nevét, akkor a felismerés jeleként, átszínezi a betűit. A szerkesztés közbeni képlet-ellenőrzéssel is baj van: a jól megadott argumentumok is hibásnak vannak jelölve. Mindkét jelenség, sajnos, más függvényeknél is előfordul.

A SUMMARIZE függvénnyel virtuális összesítő táblát készíthetünk egy létező vagy számított tábla elemzésére. Az összesítő tábla csoportosító-, kategorizáló-, statisztikai- és segédmezőkből áll. A függvény argumentumlistájának bemutatásához használjunk egy tizenhat rekordos, "termékek" nevű táblát. Az alábbi kép a tábla forrását mutatja, amelyen színezéssel próbáltam az egyes tulajdonság-típusok megkülönböztetését segíteni.

| termék AZ | név | szín   | méret | minőség |
|-----------|-----|--------|-------|---------|
| 01        | Α   | fehér  | kicsi | ١.      |
| 02        | А   | fehér  | kicsi | П.      |
| 03        | А   | fehér  | nagy  | Ι.      |
| 04        | Α   | fehér  | nagy  | П.      |
| 05        | А   | fekete | kicsi | Ι.      |
| 06        | А   | fekete | kicsi | Ι.      |
| 07        | А   | fekete | kicsi | П.      |
| 08        | А   | fekete | kicsi | П.      |
| 09        | Α   | fekete | nagy  | Ι.      |
| 10        | А   | fekete | nagy  | l.      |
| 11        | В   | fehér  | kicsi | Ι.      |
| 12        | В   | fehér  | kicsi | Ι.      |
| 13        | В   | fehér  | nagy  | ١.      |
| 14        | В   | fekete | kicsi | Ι.      |
| 15        | В   | fekete | nagy  | Ι.      |
| 16        | В   | fekete | nagy  | П.      |

240. ábra a "termékek" tábla színezett forrása

A tábla tehát két termék (A és B) három tulajdonságának (szín, méret, minőség) két-két értékét (fehérfekete, kicsi-nagy, I.-II.) tárolja. A SUMMARIZE függvény argumentumlistájának bemutatását kezdjük egy egyszerű feladat megoldásával. Hozzunk létre virtuális összesítő táblát, amely a termékek darabszámát tartalmazza, név és szín szerinti bontásban! A statisztikai mező neve DARAB legyen!

A SUMMARIZE függvény argumentumlistájának első eleme az elemzendő tábla deklarációja, majd ezt követik a csoportosító mezők nevei. A csoportosító mezők után állnak a statisztikai mezők argumentum-párosai: név-képlet. A neveket idézőjelek között kell megadnunk.

| MMARIZE( 'termékek' ; | [név]    | ; [szín] ; "C | DARAB" ; CO |
|-----------------------|----------|---------------|-------------|
| né                    | v        | szín          | DARAB       |
| A                     | 1        | fehér         | 4           |
| A                     | <b>1</b> | fekete        | 6           |
| E                     | 3        | fehér         | 3           |
| E                     | 3        | fekete        | 3           |

241. ábra

csoportosító és statisztikai mezők a megjelenített virtuális összesítő táblában

Az összesítő tábla tehát két csoportosító (név, szín) és egy statisztikai mezőből (DARAB) áll. Rekordjainak száma négy, amely a csoportosító mezők egyedi bejegyzései számának szorzata.

A csoportosító mezők tételei által meghatározott részhalmazok elemeit további mezők egyedi bejegyzései alapján osztályozhatjuk. Ezeket a kategorizáló mezőket, a csak a SUMMARIZE függvény argumentumaként alkalmazható, ROLLUP függvénnyel adhatjuk meg. A függvény argumentumai tehát mezőnevek, a felsorolás a SUMMARIZE függvény egy argumentuma, amely az argumentumlistában a statisztikai mezők deklarációja előtt áll.

A ROLLUP függvény működésének bemutatásához egészítsük ki az összesítő táblát olyan rekordokkal, amelyek az azonos nevű és színű termékek csoportjait méret szerint kategorizálják! A tábla tehát kiegészül majd a "méret" mezővel és rekordjainak száma az egyes név-szín kategoriában található egyedi méret-bejegyzések számának összegével fog növekedni.

| név | szín   | méret       | DARAB |  |  |
|-----|--------|-------------|-------|--|--|
| Α   | fehér  |             | 4     |  |  |
| Α   | fehér  | kicsi       | 2     |  |  |
| Α   | fehér  | nagy 2      |       |  |  |
| Α   | fekete | 6           |       |  |  |
| Α   | fekete | ete kicsi 4 |       |  |  |
| Α   | fekete | fekete nagy |       |  |  |
| В   | fehér  | 3           |       |  |  |
| В   | fehér  | kicsi 2     |       |  |  |
| В   | fehér  | nagy        | 1     |  |  |
| В   | fekete | te          |       |  |  |
| В   | fekete | ete kicsi 1 |       |  |  |
| В   | fekete | nagy 2      |       |  |  |

SUMMARIZE( 'termékek' ; [név] ; [szín] ; ROLLUP( [méret] ) ; "DARAB" ; COUNTA( [termék AZ] ))

242. ábra a virtuális összesítő tábla kiegészítése kategorizáló mezővel

Az ábra tanúsága szerint a kategorizáló mező átalakította a tábla szerkezetét is: hierarchiát teremtett a csoportosító és a kategorizáló mezők tételei között. A ROLLUP függvénnyel deklarált második és további kategorizáló mezők tovább strukturálják a virtuális táblát.

| MMARIZE( 'termékek' ; [név] ; [sz | ín] ; ROLLUP | ( [méret] ; | [minőség] | ); "DARAB |
|-----------------------------------|--------------|-------------|-----------|-----------|
|                                   |              |             |           |           |
| név                               | szín         | méret       | minőség   | DARAB     |
| A                                 | fehér        |             |           | 4         |
| A                                 | fehér        | kicsi       |           |           |
| A                                 | fehér        | kicsi       | l. –      | 1         |
| A                                 | fehér        | kicsi       | П.        | 1         |
| A                                 | fehér        | nagy        |           | 2         |
| A                                 | fehér        | nagy        | н.<br>Г.  | 1         |
| A                                 | fehér        | nagy        | П.        | 1         |
| A                                 | fekete       |             |           | 6         |
| A                                 | fekete       | kicsi       |           | 4         |
| A                                 | fekete       | kicsi       | ١.        | 2         |
| A                                 | fekete       | kicsi       | П.        | 2         |
| A                                 | fekete       | nagy        |           | 2         |
| A                                 | fekete       | nagy        | l.        | 2         |
| В                                 | fehér        |             |           | 3         |
| В                                 | fehér        | kicsi       |           | 2         |
| В                                 | fehér        | kicsi       | I.        | 2         |
| в                                 | fehér        | nagy        |           | 1         |
| В                                 | fehér        | nagy        | ١.        | 1         |
| В                                 | fekete       |             |           | 3         |
| В                                 | fekete       | kicsi       |           | 1         |
| В                                 | fekete       | kicsi       | ١.        | 1         |
| В                                 | fekete       | nagy        |           | 2         |
| В                                 | fekete       | nagy        | ١.        | 1         |
| В                                 | fekete       | nagy        | П.        | 1         |

243. ábra a virtuális összesítő tábla két kategorizáló mezővel

Az ábrát tanulmányozva azt látjuk, hogy a második kategorizáló mező nem a várakozásunknak megfelelően, a csoportosító mezők tételeit egészítette ki újabb kategoriákkal, hanem az első kategorizáló mező tételeit osztotta tovább. Ezáltal a tábla hierarchiája kiegészült a kategorizáló mezők tételeinek rangsorával. Amennyiben a második illetve további kategorizáló mezőkkel a csoportosító mezők tételeit kívánjuk tovább osztályozni, akkor a csak a SUMMARIZE függvényben alkalmazható, ROLL-UPGROUP függvénnyel kell a hierarchia-építést megakadályoznunk. A függvény argumentumai a kategorizáló mezők nevei.

Alakítsuk át az összesítő táblát úgy, hogy a minőség-kategoriák a méret-kategoriák mellett, az azonos nevű és színű csoportokon belül álljanak!

| név | szín   | méret | minőség | DARAB |
|-----|--------|-------|---------|-------|
| Α   | fehér  |       |         | 4     |
| Α   | fehér  | kicsi | l.      | 1     |
| Α   | fehér  | kicsi | П.      | 1     |
| Α   | fehér  | nagy  | - I.    | 1     |
| Α   | fehér  | nagy  | II.     | 1     |
| Α   | fekete |       |         | 6     |
| Α   | fekete | kicsi | l.      | 2     |
| Α   | fekete | kicsi | П.      | 2     |
| Α   | fekete | nagy  | l.      | 2     |
| В   | fehér  |       |         | 3     |
| В   | fehér  | kicsi | l. –    | 2     |
| В   | fehér  | nagy  | l. –    | 1     |
| В   | fekete |       |         | 3     |
| В   | fekete | kicsi | l. –    | 1     |
| В   | fekete | nagy  | l. –    | 1     |
| В   | fekete | nagy  | II.     | 1     |

SUMMARIZE( 'termékek' ; [név] ; [szín] ; ROLLUP( ROLLUPGRUP( [méret] ; [minőség] )) ; "DARAB" ; COUNTA( [termék AZ] ))

244. ábra a virtuális összesítő tábla hierarchia nélküli kategorizáló mezőkkel

Mivel a deklarált összesítő táblát nem tudjuk megjeleníteni, ezért képletünk helyességéről, csak közvetve, a tábla egyes tulajdonságainak ellenőrzésével tudunk meggyőződni. Vegyük számba ezeket a lehetőségeket! Lekérdezhetjük az összesítő tábla rekordszámát: COUNTROWS ( <tábla-deklaráció> ). Ellenőrizhetjük az azonos bejegyzésű rekordok darabszámát: COUNTROWS ( FILTER ( FILTER ( FILTER ( < tábla-deklaráció > ; mező<sub>1</sub> = érték<sub>1</sub> ) ; mező<sub>2</sub> = érték<sub>2</sub> ) ; mező<sub>n</sub> = érték<sub>n</sub> )). Meggyőződhetünk egy meghatározott rekord létrejöttéről: CONTAINS ( <tábla-deklaráció> ; mező<sub>1</sub> ; érték<sub>1</sub> ; mező<sub>2</sub> ; érték<sub>2</sub>... mező<sub>n</sub> ; érték<sub>n</sub> ). Lekérdezhetjük egy mezők üres bejegyzéseinek számát: COUNT-ROWS ( FILTER ( <tábla-deklaráció> ; mező = BLANK ())). Utóbbi képlet eredményéből a tábla struktúrájára következtethetünk, mivel a csoportosító mezők tételeit tartalmazó rekordokban a kategorizáló mezők tételeit tartalmazó rekordokban az alacsonyabb rangú kategorizáló mezők üresek.

Az egyes rekordok a tábla struktúrájában elfoglalt helyzetéről ad információt, a csak a SUMMA-RIZE függvény argumentumaként használható, ISSUBTOTAL függvény. Egyetlen argumentuma egy mezőnév. A függvény TRUE logikai értéket ad eredményül, ha a vizsgált rekord tétele tartalmazza az argumentumával meghatározott mező kategoriáit. Az eredményt tároló mező nevét a felhasználó adja meg idézőjelek között, az ISSUBTOTAL argumentumot megelőzően. A név-ISSUBTOTAL argumentum-párosok a SUMMARIZE függvény argumentumlistájának végén állnak. A tartalmazott kategoriákat detektáló mezőt deklarálhatjuk az ISBLANK függvény is.

Egészítsük ki a 140. oldalon álló 243. ábra összesítő tábláját ellenőrző mezőkkel, amelyek detektálják a méret és a minőség mezők tartalmazott kategoriáit!

| név | szín   | méret | minőség | DARAB | ÜMÉR  | ÜMIN  |
|-----|--------|-------|---------|-------|-------|-------|
| Α   | fehér  |       |         | 4     | TRUE  | TRUE  |
| Α   | fehér  | kicsi |         | 2     | FALSE | TRUE  |
| Α   | fehér  | kicsi | l. –    | 1     | FALSE | FALSE |
| Α   | fehér  | kicsi | П.      | 1     | FALSE | FALSE |
| Α   | fehér  | nagy  |         | 2     | FALSE | TRUE  |
| Α   | fehér  | nagy  | l. –    | 1     | FALSE | FALSE |
| Α   | fehér  | nagy  | П.      | 1     | FALSE | FALSE |
| Α   | fekete |       |         | 6     | TRUE  | TRUE  |
| Α   | fekete | kicsi |         |       | FALSE | TRUE  |
| Α   | fekete | kicsi | l. –    | 2     | FALSE | FALSE |
| Α   | fekete | kicsi | П.      | 2     | FALSE | FALSE |
| Α   | fekete | nagy  |         | 2     | FALSE | TRUE  |
| Α   | fekete | nagy  | l. –    | 2     | FALSE | FALSE |
| P   | fehér  |       |         | 3     |       | TRUE  |

SUMMARIZE( 'termékek' ; [név] ; [szín] ; ROLLUP( [méret] ; [minőség] ) ; "DARAB" ; COUNTA( [termék AZ] ) ; "ÜMÉR" ; ISSUBTOTAL( [méret] ) ; "ÜMIN" ; ISSUBTOTAL( [minőség] ))

A SUMMARIZE függvény argumentumlistája tehát a következő elemekből épül fel, sorrendben: [1] tábla-deklaráció, [2] csoportosító mezők felsorolása, [3] kategorizáló mezők felsorolása a ROLL-UP függvény argumentumaiként, [4] az egy logikai egységként kezelendő kategorizáló mezők felsorolása a ROLLUPGROUP függvénnyel, a ROLLUP argumentumaként, [5] statisztikai mezők deklarációja név-képlet argumentum-párosokkal, [6] a tartalmazott kategoriákat detektáló mezők deklarációja név-ISSUBTOTAL argumentum-párosokkal.

| SUMMARIZE <b>(</b>                                                    |
|-----------------------------------------------------------------------|
| táblanév/táblakifejezés ;                                             |
| mezőnév ; mezőnév ; ;                                                 |
| ROLLUP( mezőnév ; mezőnév ; ; ROLLUPGROUP( mezőnév ; mezőnév ; ; )) ; |
| "név" ; kifejezés ; "név" ; kifejezés ; ;                             |
| "név" ; ISSUBTOTAL( mezőnév ) ; "név" ; ISSUBTOTAL( mezőnév ) ; )     |

246. ábra a SUMMARIZE függvény szintaktikája

A SUMMARIZE függvénybe ágyazott X-es statisztikai függvények kiértékelése hibát eredményezhet. Ebben az esetben a GROUPBY függvénnyel kell dolgoznunk. Ez a függvény is egy virtuális összesítő táblát eredményez. Argumentumai: [1] tábla, [2] csoportosító mezők, pontosvesszővel elválasztva, [3] név-képlet argumentum-párosok, a név idézőjelek között, a képlet az X-es statisztikai függvénnyel. A képletben az X-es függvény tábla argumentuma az argumentum nélküli CURRENTGROUP függvény. Nézzünk egy egyszerű példát!



247. abra a példa háromtáblás adatbázisa

Az ábrán látható adatbázisban virtuális táblákkal megállapítjuk a megyék városainak átlagos lélekszámát, majd régiónként kiválasztjuk a legmagasabb átlagú megyéket.

<sup>245.</sup> ábra összesítő tábla a tartalmazott kategoriák ellenőrzésével




A kiszámolt értékeket a MAXX függvénnyel jeleníthetjük meg. Egyéni összesítés:= MAXX( GROUP-BY( GROUPBY( ... )); [MAX] )

A GROUPBY függvény figyelmen kívül hagyja az üres sorokat. Amennyiben a virtuális táblában ezekre a rekordokra is szükségünk van az X-es függvény kifejezés argumentumában elágazást kell alkalmaznunk: ahol a statisztikai függvény kiértékelése üres eredményre vezet, ott a kifejezés értéke legyen egyenlő nullával.

A SUMMARIZECOLUMNS függvény lényegében a SUMMARIZE függvény javítása. Eredménye egy virtuális összesítő tábla. Alkalmazását egy háromtáblás adatbázis elemzésén mutatom be!

|   |       |     | e   | ladás AZ | dátu    | ım   | r <b>e</b> |     | név | 18 🔽 | darab |   | ×  | egységár |            |    |
|---|-------|-----|-----|----------|---------|------|------------|-----|-----|------|-------|---|----|----------|------------|----|
|   |       | 1   | 01  |          | 2       | 017. | 07. :      | 10. | Α   |      |       |   | 5  |          | 70         |    |
| 1 | dátum |     |     | nan      | 2       | 017. | 07. :      | 11. | С   |      |       |   | 2  |          | 50         |    |
| 1 | 2017  | 07  | 10  | hátfő    | 2       | 017. | 07. :      | 11. | Α   |      |       |   | 3  |          | 70         |    |
| 1 | 2017. | 07. | 10. | kedd     | 2       | 017. | 07. :      | 11. | Α   |      |       |   | 5  |          | 70         |    |
| 2 | 2017. | 07. | 11. | sterda   | 2       | 017. | 07. :      | 12. | С   |      |       |   | 5  |          | 50         |    |
| 3 | 2017. | 07. | 12. | szerua   | 2       | 017. | 07. :      | 12. | В   |      |       |   | né |          | caír       |    |
|   | 2017. | 07. | 13. | nántok   | <br>- 2 | 017. | 07. :      | 12. | С   |      |       | 4 |    | V 12 M   | 520<br>kók |    |
| 2 | 2017. | 1.  | 14. | ренцек   | 2       | 017. | 07. :      | 12. | в   |      |       | 1 | •  |          | NCN<br>CÓN |    |
|   |       | 9   | 09  | )        | 2       | 017. | 07. :      | 13. | С   |      |       | 4 | 0  |          | Sal        | 5a |
|   |       | 10  | 10  | )        | 2       | 017. | 07. :      | 13. | С   |      |       | 2 | -  |          | Sal        | ga |
|   |       | 11  | 11  |          | 2       | 017. | 07.        | 13  | В   |      |       |   | _1 |          | 90         |    |

249. ábra a "naptár", az "eladások" és az "árucikkek" táblák

Létre kell hoznunk egy virtuális összesítőtáblát, amely napok és színek szerinti bontásban tartalmazza az árbevétel összegét. A SUMMARIZE függvény fent említett hibája miatt a feladatot az ADDCOLUMNS függvénnyel kell megoldanunk: ADDCOLUMNS( SUMMARIZE( 'eladások' ; 'naptár'[nap] ; 'árucikkek'[szín]); "BEVÉTEL"; CALCULATE ( SUMX ( 'eladások'; 'eladások'[darab] \* 'eladások'[egységár] ))). De a SUMMARIZECOLUMNS függvénnyel tovább egyszerűsíthetjük a képletet.

> SUMMARIZECOLUMNS( 'naptár'[nap]; 'árucikkek'[szín]; "BEVÉTEL"; SUMX( 'eladások'; 'eladások'[darab] \* 'eladások'[egységár] ))

250. ábra virtuális összesítő tábla két csoportosító és egy statisztikai mezővel

A SUMMARIZECOLUMNS függvény argumentumlistájának első elemei a csoportosító mezők. A mezőneveket táblanevükkel együtt kell megadnunk. Az argumentumlista végén a statisztikai mezők argumentum-párosai állnak: név idézőjelek között és kifejezés. Kategorizáló mezőket a ROLLUPADD-ISSUBTOTAL függvénnyel deklarálhatunk. A függvény nem csak a kategorizáló mezőket, de a részösszeg detektálására szolgáló logikai adattípusú mezőket is létrehozza az eredmény-táblában. Argumentumai párban állnak: kategorizáló mező neve, táblanévvel és a részösszeg-detektáló mező neve, idézőjelek között. A ROLLUPADDISSUBTOTAL függvény tehát a SUMARIZECOLUMNS függvény egy argumentuma, amely a csoportosító mezők deklarációját követi az argumentum-listában. A ROLLUPADDISSUBTOTAL argumentum és a statisztika mezők deklarációi között, állnak a függvény szűrő-argumentumai. Például egy vagy több FILTER függvény.

A függvény argumentum-listáját a SUMMARIZE függvénynél megismert "termékek" táblán mutatom be.

> =SUMMARIZECOLUMNS( 'termékek'[név]; 'termékek'[szín]; ROLLUPADDISSUBTOTAL( 'termékek'[méret]; "R\_NSZ"; 'termékek'[minőség]; "R\_NSZMÉ"); FILTER( 'termékek'; [méret] = "kicsi"); "DARAB"; COUNTA( [termék AZ]))

> > 251. ábra a SUMMARIZECOLUMNS függvény argumentumai

Az argumentum-lista elején tehát két csoportosító mező áll. Ezt követi ROLLUPADDISSUBTOTAL argumentum két kategorizáló mezővel és a hozzájuk tartozó részösszeg detektáló mező nevével, majd a szűrőt tartalmazó argumentum következik, végül a listát a statisztikai mező argumentum párosa zárja. Az összesítő táblából hiányoznak a csak a csoportosító mezők adat nélküli tételei. Ha ezeket az üres csoportokat is szerepeltetni szeretnénk, akkor a statisztikai kifejezést, a csak a SUM-MARIZECOLUMNS függvényben alkalmazható, IGNORE függvény, egyetlen argumentumában kell szerepeltetni: ... IGNORE( SUMX( 'eladások'; 'eladások'[darab] \* 'eladások'[egységár] )).

Az ADDMISSINGITEMS függvénnyel is virtuális összesítő táblát képezhetünk, de az eredménytáblában a statisztikai értékek nélküli rekordok is szerepelnek. Argumentumai sorrendben: csoportosító mezők, tábla, kategorizáló mezők és a hozzájuk tartozó részösszeg-mezők, és egy vagy több szűrő-tábla. A kategoria mezőket a ROLLUPISSUBTOTAL függvénnyel kell deklarálnunk. Argumentumai párban állnak: <kategorizáló mező> ; "<részösszeg-mező neve>". Az argumentumlista végén álló szűrő-táblák nem kötelező argumentumok, sok-táblás adatbázisban a felesleges kapcsolódó rekordok kizárását teszik lehetővé.

A SUBSTITUTEWITHINDEX függvény két, összekapcsolt táblát dolgoz fel. Az első argumentumával deklarált több oldali táblát kiegészíti a harmadik argumentumával megadott egy oldali tábla, összetartozó rekordjainak indexével, magyarul a sorszámával. A képzett mező nevét az argumentumlista második elemeként, idézőjelek között kell megadnunk. A sorszámozás nullával kezdődik. Az argumentum-lista negyedik eleme egy kifejezés, amelyet a függvény az egy oldali tábla minden öszszetartozó rekordjában kiértékel. A rekordok a kifejezés eredménye alapján történő csökkenő rendezése adja az indexek kiosztásának rendjét. Emelkedő sorrend szerinti rendezést az ötödik, nem kötelező, argumentum ASC/1/TRUE bejegyzésével írhatunk elő. Az argumentum-lista negyedik és ötödik elemének ismétlésével többmezős rendezést is deklarálhatunk. A függvény tábla-argumentumai táblát eredményező kifejezések is lehetnek. A "több oldali táblát" ebben az esetben is az első argumentummal kell meghatároznunk.

| 1 | név 🛛 🚡 🔽 | tavasz 🛛 🔽 | nyár 🔽 |   | név  | · 🛛 👘 🔽 | ősz 🗾 | tél 🔽 |
|---|-----------|------------|--------|---|------|---------|-------|-------|
| 1 | Éva       | 4          | 3      | 1 | Béla | 3       | 1     | 4     |
| 2 | Géza      | 1          | 4      | 2 | Géz  | а       | 2     | 1     |
| 3 | Béla      | 2          | 1      | 3 | Éva  |         | 3     | 2     |
| 4 | Léna      | 3          | 2      | 4 | Béla | 3       | 4     | 3     |

SUBSTITUTEWITHINDEX( tobb ; "INDEX" ; egy ; [tavasz] + [nyár] ; ASC )

252. ábra az "egy" és a "tobb" nevű táblák valamint a "tobb" táblát virtuálisan kiegészítő kifejezés

A képen látható táblák neve megegyezik a kapcsolati pozíciójukkal. A függvény negyedik argumentumában álló kifejezés az "egy" tábla rendezési kulcsa. Ha az ötödik argumentum hiányzik vagy értéke DESC/o/FALSE a rendezés csökkenő sorrendű.

| név  | tav + nyár | INDEX |
|------|------------|-------|
| Rála | 3          | 0     |
| Dela | 3          |       |
| Géza | 5          | 1     |
| Éva  | 7          | 2     |
| LVG  | '          | -     |

253. ábra a sorszámok kiosztása és a virtuálisan kiegészített "tobb" tábla

A NATURALINNERJOIN függvény összefűzi két tábla összetartozó rekordjait, majd a rekordokat egy virtuális táblába helyezi. A tábla tartalmazza a két tábla összes mezőjét. A függvény két argumentumával a táblákat kell deklarálnunk. A függvény csak összekapcsolt táblákat tud feldolgozni.

A NATURALLEFTOUTERJOIN függvény működése megegyezik a NATURALINNERJOIN függvényével, de az eredmény-táblába a kapcsolódó rekordokon kívül a függvény első argumentumával deklarált tábla nem kapcsolódó (több oldali tábla) illetve társtalan (egy oldali tábla) rekordjai is bekerülnek. Az argumentumok felcserélése tehát eltérő eredményhez vezethet. A két függvényt egy kéttáblás adatbázison mutatom be: "betűk" és "számok".

| 1 | AZ 🛛 🖥 🔽 | betű 🔽 | Γ | I | AZ 👘 🔽 | szám |   |
|---|----------|--------|---|---|--------|------|---|
| 1 | 01       | Α      | : | 1 | 04     |      | 1 |
| 2 | 02       | В      | : | 2 | 04     |      | 2 |
| 3 | 03       | с      | : | 3 | 05     |      | 3 |
| 4 | 04       | D      | 4 | 4 | 06     |      | 4 |

NATURALINNERJOIN( 'betűk' ; 'számok' )

| betűk'[AZ] | [betű] | számok'[AZ] | [szám] |
|------------|--------|-------------|--------|
| 04         | D      | 04          | 1      |
| 04         | D      | 04          | 2      |

N

NATURALLEFTOUTERJOIN( 'betűk' ; 'számok' )

| betűk'[AZ] | [betű] | számok'[AZ] | [szám] |
|------------|--------|-------------|--------|
| 01         | Α      |             |        |
| 02         | В      |             |        |
| 03         | С      |             |        |
| 04         | D      | 04          | 1      |
| 04         | D      | 04          | 2      |

| ATURALLEFTOUTERJOIN( | 'számok' ; 'betűk' ) |
|----------------------|----------------------|
|----------------------|----------------------|

| számok'[AZ] | [szám] | betűk'[AZ] | [betű] |
|-------------|--------|------------|--------|
| 04          | 1      | 04         | D      |
| 04          | 2      | 04         | D      |
| 05          | 3      |            |        |
| 06          | 4      |            |        |

254. ábra virtuális egyesítő táblák a NATURALJOIN és a NATURALLEFTOUTERJOIN függvényekkel képezve

A GENERATE függvény virtuális táblát hoz létre két tábla egyesítésével. A függvény szintaktikája: GENERATE( tábla-deklaráció<sub>1</sub> ; tábla-deklaráció<sub>2</sub> ). A virtuális tábla rekordjait a függvény a következő módszerrel képzi. Veszi az első tábla első rekordját és egyenként összefűzi a másik tábla minden rekordjával, majd veszi az első tábla második rekordját és egyenként összefűzi a másik tábla minden rekordjával. És így tovább. Magyarul: mindkét tábla minden rekordja össze lesz fűzve a másik tábla minden rekordjával. A virtuális tábla mezőinek száma a két tábla mezőszámának összege, rekordjainak száma pedig a két tábla rekordszámának szorzata.

A függvény működését egy egyszerű példán mutatom be. Képzeljünk el egy színházteremet, amelynek nézőtere öt sorból áll, soronként tíz székkel. A jegyárak a színpadtól távolodva, soronként csökkenek. A sorok tulajdonságait a "sorok" tábla tartalmazza. A székek azonosítása a sorokban, balról és jobbról kezdődően, sorszámozással történik. A széleken álló három-három szék, a színpad nem tökéletes láthatósága miatt, csökkent értékű, ezért ezekért a helyekért csak a jegyár háromnegyed részét kell megfizetni. A székek tulajdonságait a "székek" tábla tartalmazza. A táblák között nincs kapcsolat. Hozzunk létre kimutatást, amely a jegybevételt összegzi sorok szerint, teltházat feltételezve!

| sor |   | ár 🔽     | ] | 1  | szék 🔽 | szorzó | - |           |  |
|-----|---|----------|---|----|--------|--------|---|-----------|--|
| 1   | 1 | 5 000 Ft |   | 1  | B1     | 75     | % |           |  |
| 2   | 2 | 4 000 Ft |   | 2  | B2     | 75     | % |           |  |
| 3   | 3 | 3 000 Ft |   | 3  | B3     | 75     | % |           |  |
| 4   | 4 | 2 000 Ft |   | 4  | B4     | 100    | % |           |  |
| 5   | 5 | 1 000 Ft |   | 5  | B5     | 100    | % | cor       |  |
|     |   |          | 2 | 6  | J5     | 100    | % | 1         |  |
|     |   |          |   | 7  | J4     | 100    | % | 2         |  |
|     |   |          |   | 8  | J3     | 75     | % | 3         |  |
|     |   |          |   | 9  | 12     | 75     | % | 4         |  |
|     |   |          |   | -  | 14     |        | ~ | 5         |  |
|     |   |          |   | 10 | J1     | 75     | % | Végösszeg |  |

255. ábra a példa két táblája és az elemzésükre készült kimutatás

A valóságos táblák egyesítésekor valóságos rekordok kerülnek összefűzésre, de ha a GENERATE függvény egyik vagy mindkét argumentuma kifejezés, akkor előfordulhat, hogy a feldolgozás alatt álló rekordhoz nincs mit hozzáfűzni, mert a másik számított tábla üres, azaz nem rendelkezik rekordokkal. Nevezzük ezeket az egyedül maradt rekordokat feldolgozhatatlan rekordoknak.

Vizsgáljuk meg a jelenséget egy egyszerű példán. A "termékek" tábla három terméket és azonosítójukat tartalmazza, a "színek" táblában pedig az azonosítójukkal jelölt termékek gyártásban lévő színei állnak. A táblákat a "termék AZ" mezővel kapcsoltam össze.

| 1 | termék AZ 🛛 🖥 🔽 | termék 🔽 |
|---|-----------------|----------|
| 1 | 01              | Α        |
| 2 | 02              | В        |
| 3 | 03              | С        |

| 1 | szín AZ 🛛 🔽 | termék AZ 🛛 🐕 🔽 | szín 🔽 |
|---|-------------|-----------------|--------|
| 1 | 01          | 01              | fekete |
| 2 | 02          | 01              | fehér  |
| 3 | 03          | 02              | sárga  |
| 4 | 04          | 01              | sárga  |
| 5 | 05          | 02              | fekete |

256. ábra a példa "termékek" és "színek" táblája

Az ábrát vizsgálva látjuk, hogy az "A" terméket három színben (fekete, fehér és sárga), a "B" terméket két színben (sárga, fekete) gyártják. A "C" termék jelenleg nincs gyártásban. Szeretnék egy olyan virtuális táblát, amely az összes előforduló termék-szín variáció összefűzött rekordjait tartalmazza! Készítsünk egyéni összesítést, "G" néven, amely megszámlálja a GENERATE függvénnyel létrehozott virtuális tábla rekordjait! Készítsünk egyéni összesítést az előző képlet másolásával, "GALL" néven, amelyben a GENERATE függvény helyett a GENERATEALL függvényt alkalmazzuk!

| termék AZ | termék | szín AZ | termék AZ | szín   |
|-----------|--------|---------|-----------|--------|
| 01        | А      | 01      | 01        | fekete |
| 01        | А      | 02      | 01        | fehér  |
| 01        | А      | 04      | 01        | sárga  |
| 02        | В      | 03      | 02        | sárga  |
| 02        | В      | 05      | 02        | fekete |
| 03        | С      |         |           |        |
|           |        |         |           |        |



Az ábra tanúsága szerint a feldolgozhatatlan rekordot csak a GENERATEALL függvénnyel létrehozott virtuális tábla tartalmazza, a GENERATE függvénnyel képzett nem. Ellenőrizzük a virtuális tábla feldolgozhatatlan rekordjának meglétét!

| =CONTAINS(                                              |
|---------------------------------------------------------|
| GENERATEALL( 'termékek' ; CALCULATETABLE( 'színek' )) ; |
| 'termékek'[termék AZ]; "03";                            |
| [termék]; "C";                                          |
| [szín AZ]; BLANK();                                     |
| 'színek'[termék AZ]; BLANK();                           |
| [szín]; BLANK())                                        |
|                                                         |

258. ábra a feldolgozhatatlan rekord meglétének ellenőrzése

A képlet TRUE értéket ad eredményül. A "termékek" és a "színek" táblák egyesítése két azonos nevű mezőt eredményezett a virtuális táblában: "termék AZ". A névazonosság azonban nem okoz zavart, mert a bővítmény nyilvántartja a mezők származását. Ha tehát az egyik, duplikált nevű mezőre hivatkozunk a képletben, akkor adjuk meg a mezőt tartalmazó tábla nevét is, ahogy ezt a fenti ábra képletében is látjuk.

A CROSSJOIN függvény funkciója azonos a GENERATE függvényével, de az egyesítendő táblák száma nincs korlátozva. A függvény szintaktikája: CROSSJOIN( tábla-deklaráció<sub>1</sub>; tábla-deklaráció<sub>2</sub>; ... ; tábla-deklaráció<sub>n</sub>).

A függvény működését egy elképzelt polcrendszer adatait tartalmazó adatbázison mutatom be. A polcok különböző hosszúságban, szélességben és vastagságban rendelhetők. A rendelkezésre álló méreteket, centiméterben, a "hosszak", a "szélességek" és a "vastagságok" nevű táblák tartalmazzák. A táblák között nincs kapcsolat.

|   | hossz AZ 🛛 🔽 | hossz 💽 | 👔 szélesség AZ 💽 | szélesség 🔽 | Γ | vastagság AZ 💽 | vastagság 🔽 |
|---|--------------|---------|------------------|-------------|---|----------------|-------------|
| 1 | 01           | 70      | 1 01             | 14          | - | 1 01           | 3           |
| 2 | 02           | 80      | 2 02             | 17          |   | 2 02           | 5           |
| 3 | 03           | 90      | 3 <b>03</b>      | 20          |   |                |             |

259. ábra

a példa táblái: "hosszak", "szélességek", "vastagságok"

Készítsünk kimutatást a választékról! A Pivot-tábláról legyen leolvasható az egyes polcok mérete és ára. Egy köbméter fa ötven-ezer Forintba kerül.

| hossz | 🔻 szélesség | 👻 vastagság 💌 | ár     |
|-------|-------------|---------------|--------|
| 70    | 14          | 3             | 147 Ft |
| 70    | 14          | 5             | 245 Ft |
| 70    | 17          | 3             | 179 Ft |
| 70    | 17          | 5             | 298 Ft |
| 70    | 20          | 3             | 210 Ft |
| 70    | 20          | 5             | 350 Ft |
| 80    | 14          | 3             | 168 Ft |
| 80    | 14          | 5             | 280 Ft |
| 80    | 17          | 3             | 204 Ft |

ár:=SUMX( CROSSJOIN( hosszak ; 'szélességek' ; 'vastagságok' ) ; [hossz] \* [szélesség] \* [vastagság] \* 50000 / 1000000 )



A képen látható Pivot-tábla legfontosabb megjelenítési tulajdonságai a következők: [1] tagolt kimutatás-elrendezés, [2] rész- és végösszegek megjelenítésének tiltása, [3] kibontó/összecsukó gombok megjelenítésének tiltása, [4] tételcímkék táblázatos megjelenítése, [5] tételcímkék ismétlése. A kimutatás áttekinthetőségét egyéni szegélyezéssel javítottam.

A CROSSJOIN függvénnyel létrehozott virtuális táblában nem szerepelnek a feldolgozatlan rekordok. Ha szükségünk van rájuk akkor a CROSSJOIN helyett alkalmazzunk egymásba ágyazott GE-NERATEALL függvényeket. Ezt a lehetőséget mutatom be a következő példán.

| [] | betű AZ 🛛 🖥 🔽 | betű 🔽 | [ | 1 | szám AZ 🛛 🖥 🔽 | betű AZ 🛛 🥵 🔽 | szám 🔽 | ] | 7 | szín AZ 🛛 🔽 | szám AZ  🖷 🔽 | szín 🔽 |
|----|---------------|--------|---|---|---------------|---------------|--------|---|---|-------------|--------------|--------|
| 1  | 01            | Α      |   | 1 | 01            | 01            | 1      |   | 1 | 01          | 01           | fehér  |
| 2  | 02            | В      |   | 2 | 02            | 02            | 2      |   | 2 | 02          | 02           | fekete |
| З  | 03            | С      |   | 3 | 03            | 01            | 3      |   | 3 | 03          | 03           | barna  |
|    |               | ,      |   |   |               |               |        | 9 | 4 | 04          | 01           | kék    |

261. ábra a példa három táblája: "betűk", "számok", "színek"

Virtuális táblában egyesítsük a betűk tábla rekordjait a számok tábla minden kapcsolódó rekordjával, majd az így képzett rekordokat fűzzük össze a színek tábla sárga rekordjaival! Az eredménytáblába kerüljenek bele a feldolgozhatatlan rekordok is!

A megoldás előtt vizsgáljuk meg a táblákat, hány rekordra számíthatunk az eredményben. Az "A" betűnek kettő, a "B" betűnek egy kapcsolódó rekordja áll a "számok" táblában. A "C" betűnek nincs kapcsolódó rekordja. Az első két tábla feldolgozása tehát négy rekordot eredményez, de ez a végeredmény is, mivel a "színek" táblának nincs "sárga" rekordja.

A CROSSJOIN függvénnyel képzett egyesítő tábla nem tartalmaz feldolgozhatatlan rekordokat, erről a COUNTROWS függvénnyel győződhetünk meg. CJ:=COUNTROWS (CROSSJOIN('betűk'; RELATEDTABLE('számok'); FILTER('színek2'; [szín] = "sárga"))) → (üres). Tehát a GENERATEALL függvénnyel kell próbálkoznunk. GALL2:=COUNTROWS (GENERATEALL(GENERATEALL('betűk'; RELATEDTABLE('számok')); FILTER('színek'; [szín] = "sárga"))) → 4.

| betű AZ | betű | szám AZ | betű AZ | szám | szín AZ | szám AZ | szín |
|---------|------|---------|---------|------|---------|---------|------|
| 01      | Α    | 01      | 01      | 1    |         |         |      |
| 01      | Α    | 03      | 01      | 3    |         |         |      |
| 02      | В    | 02      | 02      | 2    |         |         |      |
| 03      | С    |         |         |      |         |         |      |

262. ábra az egymásba ágyazott GENERATEALL függvényekkel létrehozott virtuális tábla megjelenítése

Az UNION függvény azonos felépítésű táblák vagy azonos felépítésű táblákat eredményező kifejezések virtuális egyesítésére szolgál. A függvény eredménye az argumentum-lista első elemével deklarált virtuális tábla, amely tartalmazza a többi tábla rekordjait is. Másként fogalmazva, a függvény az első argumentumával meghatározott táblába helyezi el a további argumentumaival meghatározott táblák rekordjait is. A függvényt egy háromtáblás adatbázison mutatom be.

| 1 | tantárgy 🔽 | létszám 🔽 | 1 | kurzus 💽 | fő 🔽 | 1 | képzés 💽 | diák |    |
|---|------------|-----------|---|----------|------|---|----------|------|----|
| 1 | filozófia  | 25        | 1 | magyar   | 24   | 1 | etológia |      | 17 |
| 2 | esztétika  | 18        | 2 | angol    | 15   |   |          |      |    |

263. ábra a példa három táblája: "első", "második" és "harmadik"

Adjuk össze a három tábla diákjait! A legegyszerűbb megoldást választjuk: a három tábla rekordjait az UNION függvénnyel egyetlen virtuális táblába helyezzük el, majd összeadjuk a létszám-adatokat.

| vizsgázók | =SUMX( UNION( 'első' ; 'második' ; harmadik ) ; [létszám] ) |
|-----------|-------------------------------------------------------------|
| VIZSgazok | -SOMA( ONION( EISO ; Masodik ; Manhadik ); [letszam]        |

| tantárgy  | létszám |
|-----------|---------|
| filozófia | 25      |
| esztétika | 18      |
| magyar    | 24      |
| angol     | 15      |
| etológia  | 17      |

264. ábra

az egyéni összesítés képlete és az UNION függvénnyel létrehozott virtuális tábla megjelenítése

Ahogy látjuk az UNION függvény számára az eltérő mezőnevek nem okoznak problémát, de a táblák mezőszámának és a mezők adattípusának már azonosnak kell lenniük. Ez a megállapítás a többi azonos felépítésű táblákkal dolgozó DAX függvényre is igaz.

Az INTERSECT és az EXCEPT függvények két azonos felépítésű táblát vizsgálnak. Két argumentumuk a két tábla. Az INTERSECT függvény az első argumentumával meghatározott tábla rekordjait adja vissza, amelyek szerepelnek a második argumentumával megadott táblában. Az EXCEPT függvény az első argumentumával meghatározott tábla rekordjait adja vissza, amelyek nem (!) szerepelnek a második argumentumával megadott táblában. Magyarul a két függvény meghatározása azonos kivéve a nem szócskát. Van két táblánk: "A" és "B".

| / szín  | <b>×</b> | alak 💌    | 1 | szín  | akak    |      |             |       |
|---------|----------|-----------|---|-------|---------|------|-------------|-------|
| 1 sárga |          | kör       | 1 | sárga | kör     |      |             |       |
| 2 kék   |          | kör       | 2 | kék   | kör     |      |             |       |
| 3 zöld  |          | kör       | 3 | barna | négyzet | -00  | INTROWS( IN | TERSE |
| 4 sárga |          | háromszög |   |       |         | =COL | JNTROWS( IN | TERSE |
| 5 kék   |          | háromszög |   |       |         | =COL | JNTROWS( EX | CEPT  |
| 6 zöld  |          | háromszög |   |       |         | =COL | JNTROWS( EX | CEPT  |

265. ábra az INTERSECT és az EXCEPT függvények bemutatása

# tábla-kezelő függvények rendszerezése

Az előző fejezetben megismert függvények tulajdonságainak összehasonlítása előtt vezessünk be néhány új fogalmat és fogalmazzunk meg néhány általános, az egész függvény-családra érvényes megállapítást.

A tábla-kezelő függvények egy vagy több valóságos vagy virtuális táblával dolgoznak. Ezeket az adat-feldolgozás sémája szerinti bemeneti vagy magyarul feldolgozandó táblákat, nevezzük a függvény alap-tábláinak! A családba tartozó összes függvény kimenete, másszóval eredménye, egy virtuális tábla. Ezt a memóriában létrehozott adat-szerkezetet nevezzük eredmény-táblának!

Három függvény alap-táblái azonos felépítésű táblák. Ezt a fogalmat a programban az azonos nevű oszlopokat azonos sorrendben tartalmazó táblázatok megnevezésére hoztuk létre, de a bővítményben, ahogy ezt az előző fejezet végén már rögzítettük, nem a mezőneveknek, hanem a mezők számának és az azonos sorszámú mezők adattípusának kell azonosnak lennie.

Az eredmény-tábla, az egyes függvények funkciója szerint, lehet [1] az alap-tábla mintarekordokkal, [2] a kiegészített alap-tábla, [3] az alap-táblák egyesítése, [4] egy új tábla [5] csoportosító illetve kategorizáló mezők tételei által strukturált összesítő tábla.

| a függvény neve      | alap-táblái                              | eredmény-táblája                                         |  |  |
|----------------------|------------------------------------------|----------------------------------------------------------|--|--|
| SAMPLE               | ogy tábla                                | alap-tábla a minta-rekordokkal                           |  |  |
| ADDCOLUMNS           | egy tabla                                | alap-tábla                                               |  |  |
| SUBSTITUTEWITHINDEX  | két összekapcsolt tábla                  | kiegészítve az új mezőkkel                               |  |  |
| UNION                | meghatározatlan számú, azonos felépítésű |                                                          |  |  |
| INTERSECT            | két azonos                               | az első alap-tábla<br>a kiválogatott rekordokkal         |  |  |
| EXCEPT               | felépítésű tábla                         | a kivalogatott rekordokkai                               |  |  |
| NATURALINNERJOIN     |                                          |                                                          |  |  |
| NATURALLEFTOUTERJOIN |                                          |                                                          |  |  |
| GENERATE             | Ket tabla                                | új tábla a táblák mezőivel<br>az összefűzött rekordokkal |  |  |
| GENERATEALL          |                                          |                                                          |  |  |
| CROSSJOIN            | meghatározatlan számú tábla              |                                                          |  |  |
| SELECTCOLUMNS        | egy tábla                                | <i></i>                                                  |  |  |
| ROW                  | meghatározatlan számú tábla              | új tábla<br>a képzett rekordokkal                        |  |  |
| DATATABLE            | nincs alap-táblája                       |                                                          |  |  |
| SUMMARIZE            |                                          |                                                          |  |  |
| GROUPBY              | maghatározatlan czámú tábla              | öcczocít ž táblo                                         |  |  |
| SUMMARIZECOLUMNS     | megnatarozatian szamu tabla              | osszesítő tábla                                          |  |  |
| ADDMISSINGITEMS      |                                          |                                                          |  |  |

266. ábra

a tábla-kezelő függvények rendszerezése alap- és eredmény-táblájuk szerint

A tábla-kezelő függvények családjába tartoznak azok a függvények is, amelyek csak meghatározott függvénybe ágyazottan alkalmazhatók. Az előbbiek legyenek a szolga-, az utóbbiak a gazda-függvények. Tekintsük át őket!

| gazda-függvény   | szolga-függvény     | szolga-függvény funkciója                            |  |  |
|------------------|---------------------|------------------------------------------------------|--|--|
| GROUPBY          | CURRENTGROUP        | tábla-argumentum helyettesítésére                    |  |  |
| SUMMARIZE        | ROLLUP              | kategorizál                                          |  |  |
|                  | ROLLUPGROUP         | kategorizál, de nem épít hierarchiát                 |  |  |
|                  | ISSUBTOTAL          | részösszeget detektál                                |  |  |
| SUMMARIZECOLUMNS | ROLLUPADDISSUBTOTAL | kategorizál                                          |  |  |
|                  | IGNORE              | megjeleníti a statisztikai érték nélküli csoportokat |  |  |

267. ábra a gazda- és szolgafüggvények rendszerezése

Az összesítő táblát eredményező függvények tárgyalása során tapasztalhattuk, hogy a DAX még távolról sem tökéletes. Gondoljuk csak a javítás, javításának a javítására (SUMMARIZE, SUMMARIZE-COLUMNS, ADDMISSINGITEMS).

# függvények előfordulása

#### A

ABS 72, 90, 96 ACOS 99 ACOSH 99 ACOT 99 ACOTH 99 ADDCOLUMNS 126, 137, 143, 150 ADDMISSINGITEMS 144, 150, ALL 52, 110, 111, 114, 128, 129, 130, ALLEXCEPT 110, 111, 112, 120, 121, 129, 130 ALLNOBLANKROW 108, 109, 110, 111 ALLSELECTED 108, 109, 110, 111, 112 AND 94, 95, 98, ASIN 99 ASINH 99 ATAN 99 ATANH 99 AVERAGE 49,67, 125, 126 **AVERAGEA 126** AVERAGEX 125, 143

#### В

BETA.DIST 99 BETA.INV 99 BLANK 96, 97, 132, 138, 141, 147

## С

CALCULATE 63, 64, 65, 67, 111, 112, 114, 118, 119, 120, 122, 124, 125, 129, 130, 131, 138, 143 CALCULATETABLE 122, 124, 129, 147 **CALENDAR** 79 **CALENDARAUTO 79 CEILING** 96, 97, 98 CHISQ.DIST 99 CHISQ.DIST.RT 99 CHISQ.INV 99 CHISO.INV.RT 99 **CLOSINGBALANCEMONTH 81 CLOSINGBALANCEQUARTER 81 CLOSINGBALANCEYEAR 81, 84 COMBIN 99 COMBINA 99** CONCATENATE 77, 133, 134, 136 **CONCATENATEX 133 CONFIDENCE.NORM 99 CONFIDENCE.T 99** CONTAINS 92, 93, 94, 141, 147 CONTAINSROW 117, 118 **COS** 99 **COSH** 99 **COT** 99

COTH 99 COUNT 111, 118, 119, 125, 126 COUNTA 49, 65, 114, 122, 126, 144 COUNTAX COUNTBLANK 126 COUNTROWS 46, 87, 92, 109, 110, 115, 116, 117, 118, 124, 126, 130, 138, 141, 148 COUNTX 125 CROSSFILTER 121, 122 CROSSJOIN 147, 148, 150 CURRENCY 99 CURRENTGROUP 142, 143, 150 CUSTOMDATA

### D

**DATATABLE** 138, 150 DATE 71, 72, 77, 78 DATEADD 84, 85, 86, 87, 89 DATEDIFF 72 **DATESBETWEEN 88, 89 DATESINPERIOD** 87, 88, 89 **DATESMTD 85, 89 DATESQTD 85, 89 DATESYTD** 85, 89 DATEVALUE 23, 72, 99 DAY 71, 72, 77 DEGREES 99 DETAILROWS DISTINCT 108, 109, 110 DISTINCTCOUNT 49, 65 **DIVIDE 97** 

## Ε

EARLIER 54, 55, 63, 119, 121, 124, 125, 129, 130 EARLIEST 125 EDATE 71, 72 ENDOFMONTH 82, 88 ENDOFQUARTER 82, 88 ENDOFYEAR 82, 88 EOMONTH 71, 72 EVEN 98 EXACT 131, 132, 136 EXCEPT 149, 150 EXP 99 EXPON.DIST 99

## F

FACT 99 FALSE 94 FILTER 53, 54, 64, 65, 92, 116, 117, 118, 121. 122, 129, 130, 141, 144, 148 FILTERS 108, 109, 110, 115 FIND 132, 133, 134, 135, 136 FIRSTDATE 82, 83, 88 FIRSTNONBLANK 123, 129 FIXED 99 FLOOR 97, 98 FORMAT 76, 77, 99, 100, 101, 102, 103, 114, 116, 126

## G

GCD 97 GENERATE 145, 145, 147, 150 GENERATEALL 146, 147, 148, 150 GEOMEAN 125 GEOMEANX 125 GROUPBY 142, 143, 150

#### Н

HASONEFILTER 115 HASONEVALUE 87, 115, 116 HOUR 90

## Ι

IF 23, 63, 73, 74, 77, 78, 87, 91, 92, 93, 95, 96, 113, 114, 116, 129, 130, 132, 133 **IFERROR** 96, 132 **IGNORE** 144, 150 INT 23, 97, 98 **INTERSECT** 149, 150 ISBLANK 92, 94, 141 **ISCROSSFILTERED** 113, 114 **ISEMPTY** 92, 94 ISERROR 23, 91, 94, 96, 133 **ISEVEN** 91, 94 **ISFILTERED** 113, 114 **ISLOGICAL** 91, 94 **ISNONTEXT** 91, 94 **ISNUMBER** 91, 94 **ISO.CEILING** 97, 98 **ISODD** 91, 94 **ISONORAFTER** 93, 94 **ISSUBTOTAL** 141, 142, 150 **ISTEXT** 91, 94

## Κ

KEEPFILTERS 120 KEYWORDMATCH 94

#### L

LASTDATE 82, 83, 88, 124 LASTNONBLANK 123, 124 LCM 97 LEFT 94, 134, 135, 136 LEN 131, 135, 136 LN 99 LOG 99 LOG10 99 LOOKUPVALUE 105, 122, 123 LOWER 134, 136

## Μ

MAX 49, 125, 126, 129, 143 MAXA 126 MAXX 125, 143 MEDIAN 125 MEDIANX 125 MID 128, 134, 136 MIN 49, 125, 126 MINA 126 MINUTE 90, 91 MINX 125 MOD 97, 116, 117, 118 MONTH 71, 72, 77 MROUND 97, 98

## Ν

NATURALINNERJOIN 145, 150 NATURALLEFTOUTERJOIN 145, 150 NEXTDAY 83, 88, 89 NEXTMONTH 84, 89 NEXTQUARTER 84, 89 NEXTYEAR 84, 89 NOT 23, 92, 94 NOW 90

## 0

ODD 98 OPENINGBALANCEMONTH 81, 88 OPENINGBALANCEQUARTER 81, 88 OPENINGBALANCEYEAR 81, 82, 88 OR 94, 95

## Ρ

PARALLELPERIOD 85, 89 PATH 104, 105, 106, 129 PATHCONTAINS 105 PATHITEM 105, 106 PATHITEM REVERSE 105 PATHLENGTH 105 PERCENTILE.EXC 125 PERCENTILE.INC 125 PERCENTILEX.EXC 125 PERCENTILEX.INC 125 PERCENTILEX.INC 125 PERMUT 99 PI 97 POISSON.DIST 99 POWER 97 PREVIOUSDAY 83, 88, 89

#### PREVIOUSMONTH 84, 89 PREVIOUSQUARTER 84, 89 PREVIOUSYEAR 84, 89

#### Q

**QUOTIENT** 53, 97

#### R

**RADIANS** 99 RAND 98 **RANDBETWEEN 98** RANK.EQ 126, 127, 128 RANKX 126, 127, 128, 129, 130 RELATED 46, 63, 65, 117, 118, 124 **RELATEDTABLE** 46, 124, 137, 148 **REPLACE** 134, 136 **REPT** 133, 136 RIGHT 81, 103, 134, 135, 136 ROLLUP 139, 140, 142, 150 ROLLUPADDISSUBTOTAL 143, 144, 150 ROLLUPGROUP 140, 142, 150 **ROLLUPISSUBTOTAL 144** ROUND 50, 52, 67, 74, 97, 98, 126 ROUNDDOWN 97, 98 ROUNDUP 74, 77, 86, 97, 98 ROW 126, 137, 138, 150

## S

**SAMEPERIODLASTYEAR 87 SAMPLE** 136, 150 SEARCH 73, 132, 136 SECOND 90 SELECTCOLUMNS 137, 150 **SIGN** 90, 96 **SIN** 99 **SINH 99** SQRT 97 STARTOFMONTH 82,88 **STARTOFQUARTER 82,88 STARTOFYEAR 82, 88** STDEV.P 49, 125 STDEV.S 49, 125 STDEVX.P 125 STDEVX.S 125 SUBSTITUTE 134, 135, 136 SUBSTITUTEWITHINDEX 144, 150 SUM 49, 50, 54, 55, 63, 64, 81, 82, 90, 91, 112, 116, 120, 125, 129, 130, 131, 138 SUMMARIZE 126, 133, 138, 139, 140, 141, 142, 143, 144, 150 **SUMMARIZECOLUMNS** 143, 144, 150 SUMX 52, 53, 54, 125, 130, 131, 137, 138, 143, 144 SWITCH 74, 77, 95, 96, 116

## Т

TAN 99 TANH 99 TIME 91 TIMEVALUE 23, 91, 99 TODAY 53, 71, 72 TOPN 126, 128, 130, 131 TOTALMTD 81, 88, 89 TOTALQTD 81, 82, 88, 89 TOTALYTD 81, 88, 89 TOTALYTD 81, 88, 89 TRIM 135, 136 TRUE 94 TRUNC 91, 97, 98, 116, 117, 118

## U

UNICODE 131 UNION 148, 149, 150 UPPER 134, 136 USERELATIONSHIP 119, 120 USERNAME USERPRINCIPALNAME

## V

VALUE 103 VALUES 87, 108, 109, 110, 115, 116 VAR.P 49, 125 VAR.S 49, 125 VARX.P 125 VARX.S 125

## W

WEEKDAY 71, 72, 77, 78 WEEKNUM 71, 72, 77, 78

#### X XIRR

XNPV

## Υ

YEAR 71, 72, 77, 78 YEARFRAC 72